Протолитическое равновесие. Протолитическая теория кислот и оснований




1. Реакции протолиза (ионизации).

К ним относятся реакции взаимодействия кислоты или основания с водой:

К-та 1 осн.2 к-та 2 осн.1

К-та 1 осн.2 к-та 2 осн. 1

2. Реакции автопротолиза , связанные с передачей протона от одной молекулы воды к другой.

    Реакции гидролиза

CH 3 COONa+ H 2 O ←→ CH 3 COOH + NaOH

CH 3 COO - + H 2 O ←→ CH 3 COOH + OH -

осн.2 к-та 1 к-та 2 осн.1

    Кислотно-основные реакции

NH 3 + HCl → NH 4 + + Cl -

осн.2 к-та 1 к-та 2 осн.1

С точки зрения аналитики выделяют следующие типы реакций:

1) с переносом протона – кислотно-основные;

2) с переносом электрона – ОВ реакции;

3) с переносом электронных пар с образованием связей по донорно-акцепторному механизму – реакции комплексообразования.

2.2.2 Константа кислотности и основности. Расчеты рН

Способность кислоты отдавать протон, а основания принимать его (т.е. силу кислот и оснований) можно охарактеризовать константами равновесий,

HS – растворитель

которые называют константами кислотности (К а ) и основности (К b ).

Активность растворителя – величина постоянная (табличные данные)

Положения кислотно-основных равновесий

и величины соответствующих констант кислотности и основности зависят от природы растворителя.

Если растворитель – более сильный акцептор протонов, чем вода (например, аммиак), то в нем сила кислот возрастает. Так кислоты слабые в водных растворах могут быть сильными в аммиаке.

Чем сильнее основные свойства растворителя, тем больше кислот нивелируется в нем.

Аналогично, чем сильнее кислотные свойства растворителя, тем больше оснований нивелируется в нем.

При переходе от более к менее основному растворителю сильные кислоты могут быть слабыми (напр., HCl и HClO 4 в воде – сильные кислоты, а в ледяной уксусной кислоте становятся слабыми).

Расчет рН

Расчеты кислотно-основных равновесий используют для:

1) нахождения рН раствора по известным равновесным концентрациям;

2) определения равновесных концентраций по известному значению рН

рН – важная оценка для биологических жидкостей.

Для живых организмов характерно поддержание кислотно-основного состояния на определенном уровне. Это находит выражение в достаточно постоянных значениях рН биологических сред и способности восстанавливать нормальные значения рН при воздействии протолитов.

Система, поддерживающая протолитический гомеостаз, включает в себя не только физиологические механизмы (легочную и почечную компенсации), но и физико-химическое действие, ионный обмен, диффузию.

В аналитической химии важно знать концентрации всех частиц в растворе кислоты или основания после установления равновесия, в частности концентрацию ионов Н + (рН).

- слабый электролит

- сильный электролит

Чистая вода


Чистой воды не существует. Морская вода содержит почти все химические элементы.

Растворы слабых кислот

Т.к.
, то

Растворы слабых оснований



Растворы сильных кислот

Для учета влияния электростатического взаимодействия ионов введено понятие ионной силы раствора . Она зависит от концентрации иона и его заряда.

Для сильных электролитов закон действия масс выполняется, если пользуются активностями. Активность учитывает концентрацию реагентов, меж-ионное взаимодействие (ион-ионное, ион-дипольное, диполь-дипольное, водородные связи).

Согласно теории Дебая и Хюккеля

- зависимость коэффициента подвижности от ионной силы

А зависит от диэлектрической постоянной растворителя и температуры системы. При t=25°С А=0,512 и для бинарного электролита



Растворы сильных оснований

3.3 Протолитическое равновесие в буферных растворах

В широком смысле буферными называют системы, поддерживающие определенное значение какого-либо параметра при изменении состава.

Буферные растворы могут быть кислотно-основными – поддерживают постоянное значение рН при введении кислот или оснований; окислительно-восстановительными – сохраняют постоянным потенциал системы при введении окислителей или восстановителей; известны металлобуферные растворы.

Буферный раствор представляет собой сопряженную пару; в частности, кислотно-основной буфер – сопряженную кислотно-основную пару:

Методом рН-метрии

Измерения проводят в разбавленных растворах, принимая коэффициент активности равным единице.

Если не учитывать реакцию автопротолиза воды, то уравнение ионных равновесий в водном растворе слабой одноосновной кислоты будет иметь следующий вид:

HA + H 2 O = H 3 O + + A - x

Константа кислотности выразится как:

Причем [c] = 1 моль/л

Если кислота слабая, то

Отсюда получаем

Готовят растворы с разной начальной концентрацией кислоты и измеряют их рН.

Строят график зависимости рН от lg c HA . Из вышеприведенного уравнения следует, что отрезок, отсекаемый прямой на оси ординат равен 1/2рK кис.

Определение константы кислотности потенциометрическим методом

Для одноосновной кислоты

.

Для определения надо измерить концентрацию ионов гидроксония в растворе с известной концентрацией кислоты. В качестве индикаторного электрода можно использовать стеклянный или хингидронный электрод, например Ag | AgCl | KCl || H 3 O + , нас.х.г |Pt

Для получения более точных результатов проводят титрование раствора слабой кислоты раствором NaOH, в ходе титрования измеряют величину ЭДС элемента и рассчитывают рН.

В системе протекают следующие реакции:

H 2 O + H 2 O = H 3 O + + OH - x 1

HA + H 2 O = H 3 O + + A - x 2

H 3 O + + NaOH = 2 H 2 O + Na x 3

Можно допустить, что x 1 << x 2 и x 1 << x 3 .

Балансовые уравнения имеют вид:

.

Как было показано ранее


РАЗДЕЛ 3. КИНЕТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ПРОСТЫХ РЕАКЦИЙ

Химическая кинетика – это наука, изучающая протекание химической реакции или физико – химических процессов во времени, это раздел физической химии, в котором изучается зависимость скорости химической реакции от концентрации реагентов, температуры, свойств среды, излучения и других факторов.

Классификация химических реакций

С точки зрения кинетики существует несколько принципов классификации химических реакций:

1) по агрегатному состоянию участников реакции все реакции делятся на гомогенные и гетерогенные.

Гомогенные реакции, когда все реактанты находятся в одной фазе. Они бывают:

а) газофазные

б) жидкофазные

в) твердофазные

Гетерогенные реакции, когда участники реакции находятся в разных фазах; реакция протекает на границе раздела фаз

2) по специфике элементарного акта

а) каталитические

б) некаталитические

в) фотохимические

г) электрохимические

д) цепные

3) по числу стадий

а) простые (1 стадия)

б) сложные

4) по обратимости реакций

а) обратимые (двусторонние)

б) необратимые

Реакция считается необратимой, если:

а) в результате реакции образуется газ

HCOOH → H 2 O + CO 2

б) образуется труднорастворимое соединение

AgNO 3 + KJ → AgJ↓ + KNO 3

в) образуется малодиссоциируемое соединение

HNO 3 + NaOH → NaNO 3 + H 2 O

г) выделяется большое количество тепла

3Fe 3 O 4 + 8Al → 4Al 2 O 3 + 9Fe + ∆H

3.2. Элементарные химические реакции

Скорость химических реакций зависит от пути прохождения реакции. Этот путь может быть представлен в виде суммы элементарных химических реакций.

Элементарная реакция – это односторонний процесс превращения одних компонентов в другие. Она является совокупностью однотипных элементарных актов химического превращения. Большинство химических реакций не являются элементарными; они включают в себя несколько элементарных стадий – сложные реакции.

Механизм реакции – это совокупность элементарных стадий.

Реактант – участник химической реакции.

d ρ n k – бесконечно малое изменение числа молей компонента k в элементарной реакции ρ

Если d ρ n k > 0 – продукт реакции

d ρ n k < 0 – исходное вещество

d ρ n k = 0 – индифферентное вещество

3.3. Скорость химической реакции

Скорость химической реакции – это число однотипных элементарных актов химического превращения, совершающихся в единицу времени в единице объема или на единице поверхности.

Рассмотрим реакцию:

t = 0 - исходные числа молей

t ≠ 0 n A n B n C n D - текущие числа молей ξ =

(кси) ξ – глубина протекания реакций

Самоионизация воды

Вода, даже после многократной перегонки, сохраняет способность проводить электрический ток. Это способность воды обусловлена ее самоионизацией.

$2H_2O ↔ H_3O^+ + OH^-$

Термодинамическая константа равновесия имеет вид:

Рисунок 1.

где $а_X^{отн}=\frac{a_X^{равн}}{a_X^0}$ -- относительная активность частицы $X$ в равновесной системе;

$aX^{равн}$ - абсолютная активность частицы $X$ в равновесной системе;

${a_x}^0$ - абсолютная активность $X$ в термодинамическом состоянии системы.

Относительная активность воды при равновесии практически равна единице, так как степень протекания реакции очень мала (если за стандарное состояние брать теоретически неионизированную воду.

Коэффициенты активности ионов $OH^-$ и $H_3O^+$ будут близки к единице в читсой воде. Равновесие реакции сильно сдвинуто влево. Относительные активности $OH^-$ и $H_3O^+$ практически равны их молярным концентрациям. Откуда

${K_a}^0 \sim K_{авто} = $

где $ и $ - молярные концентрации;

$K_{авто}$ - константа автопрополиза воды, равная $1,00\cdot 10^{-14} \ моль^2/л^2$ при $25^\circ \ C.$

В чистой воде концентрации $ и $ будут равны, поэтому

$==\sqrt{10^{-14}}=10^{-7}$ при $25^\circ \ C.$

Для удобства расчетов концентрацию указывают в виде отрицательного логарифма, обозначаемого как $pH$:

$pH= -lg $

Показатели $pH$ для чистой воды равны $7$, в кислых растворах $pH 7$.

Диссоциация кислоты и константа кислотности

Для кислоты $AH$ диссоциацию можно выразить уравнением:

$AH + H_2O ↔ A^- + H_3O^+$

В состоянии равновесия относительная плотность воды при переходе от одной кислоты к другой изменяется незначительно, а при бесконечном разбавлении приближается к нулю. Поэтому используется термодинамическая константа кислотности $K_a^0$ ($AH$).

Отношение коэффициентов активности одинаково для всех кислот и равно единице, в случае, если процессы протекают в разбавленных растворах.

Тогда в разбавленном водном растворе в качестве меры силы кислоты используют константу кислотности $Ka (AH$), которую можно определить по формуле:

$Ka (AH)=\frac{}{}$

В формуле отображена молярная концентрация частиц при фиксированной температуре $(25^\circ \ C)$ в состоянии равновесия.

Чем выше константа кислотности, тем выше степень диссоциации, тем сильнее кислота. Для расчетов и характеристики кислотности используют отрицательный логарифм константы кислотности $pKa$.

$pKa (AH)= -lgKa (AH)$

Чем больше значение у константы кислотности, тем слабее кислота.

Величина константы кислотности равна тому значению $pH$ раствора, при котором кислота будет ионизирована наполовину:

$pKa (AH) = pH - lg \frac{}{}$

Величина, характеризующая кислотность молекул воды в водном растворе равна:

$Ka=\frac{}{}=\frac{Ka_{авто}}{}=\frac{10^{-14}}{55,5}$

Таким образом, при температуре $25^\circ C$, $pKa (H_2O) = 15,7$. Данная величина характеризует кислотность молекул воды в растворе.

Для гидроксониевого иона $pKa (H_3O^+) = pK_{авто} - pKa = 14-15,7 = -1,7.$

Величины $pKa$ являются табличными данными. Однако, для кислот с $pKa 0$ данные таблиц будут неточными.

Определить константы кислотности в воде путем прямого измерения концентраций $A^-$ и $AH$ можно только тогда, когда кислотная диссоциация происходит хоть в какой то степени, даже еле заметной.

Если кислота очень слаба, что практически не диссоциирует, то нельзя точно измерить концентрацию $A^-$. Если же, наоборот, кислота настолько сильна, что диссоциирует почти полностью, то невозможно измерить концентрацию $AH$. В таком случае будут использоваться косвенные методы определения кислотности.

Константа ионизации основания

Для выражения константы диссоциации основания в воде, воспользуемся уравнением:

$B + H_2O ↔ BH^+ + OH^-$

Константа основности равна:

$Kb=\frac{}{[B]}$

В последнее время при расчетах константами основности практически не пользуются, так как по константе кислотности сопряженной кислоты можно получить всю необходимую информацию об основании $BH^+.$

$BH^+ + H_2O ↔ B + H_3O^+$

$Ka (BH^+) = \frac{[B]}{}$

Константа кислотности кислоты будет являться мерой силы:

  • $AH$ или $BH^+$ как доноров протона;
  • $A^-$ или $B$ как акцепторов протона;
  • сильной кислоте $AH$ или $BH^+$ соответствует слабое сопряженное основание $A^-$ или $B$, и тогда величина $pKa$ мала или отрицательна;
  • сильному основанию $A^-$ или $B$ соответствует слабая кислота $AH$ или $BH^+$ и константа кислотности будет положительна

Непосредственно измерить силу кислот или оснований можно только в узком интервале $pKa (BH^+).$ За пределами интервала основность будет определяться косвенными методами. Значения $pka (BH^+)$ вне интервала от $-2$ до $17$ будут неточными.

Корреляция между строением и силой кислот

Относительную силу кислот можно предсказать, основываясь на природе центрального атома и строении молекулы кислоты.

Сила бескислородной кислоты $HX$ и $H_2X$ (где $X$ -- галоген) тем выше, чем менее прочная связь $X-H$, то есть, чем больше радиус атома $X$.

В рядах $HF - HCl - HBr - HI$ и $H_2S - H_2Se - H_2Te$ сила кислот увеличивается.

Для кислородсодержащих кислот сила кислот тем выше, чем больше величина m в соединении состава $Э(OH)nOm$.

К равновесию, которое устанавливается в растворе слабого электролита между молекулами и ионами, можно применить законы химического равновесия и записать выражение константы равновесия. Например, для электролитической диссоциации (протолиза) уксусной кислоты, протекающей под действием молекул воды,

СН 3 СООН + Н 2 О ↔ Н 3 О + + СН 3 СОО –

константа равновесия имеет вид

Используются два способа записи значения констант кислотности и основности. При первом способе значения константы и температуры указываются в одной строке после уравнения реакции и запятой, например,

HF + H 2 O ↔ H 3 O + + F – , K k = 6,67·10 –4 моль·л –1 (25°С).

При втором способе сначала записывают значение константы, а затем в скобках приводятся кислотная и основная формы электролита, растворитель (обычно вода) и температура:

К к = 6,67·10 –4 (HF, F – , H 2 O, 25°C) моль·л –1 .

Константы кислотности и основности зависят от природы электролита, растворителя, от температуры, но не зависят от концентрации раствора. Они характеризуют способность данной кислоты или данного основания распадаться на ионы: чем выше значение константы, тем легче электролит диссоциирует.

Многоосновные кислоты, а также основания двух- и более валентных металлов диссоциируют ступенчато. В растворах этих веществ устанавливаются сложные равновесия, в которых участвуют ионы различного заряда. Например, диссоциация угольной кислоты происходит в две ступени:

Н 2 СО 3 + Н 2 О ↔ Н 3 О + + НСО 3 – ;
НСО 3 – + Н 2 О ↔ Н 3 О – + СО 3 2– .

Первое равновесие - первая ступень протолиза - характеризуется константой кислотности, обозначаемой К к1:

Суммарному равновесию

Н 2 СО 3 + 2Н 2 О ↔ 2Н 3 О + + СО 3 2 –

отвечает суммарная константа кислотности К к:

К к =

Величины К к, К к1 , и К к2 связаны друг с другом соотношением:

К к = К к1 К к2 .

При ступенчатой диссоциации веществ распад по последующей ступени всегда происходит в меньшей степени, чем по предыдущей (по второй меньше, чем по первой и т.д.) Иначе говоря, соблюдаются неравенства:

К к > К к2 > К к3 и К 01 > К 02 > К 03 . . .

Это объясняется тем, что энергия, которую нужно затратить для отрыва иона, минимальна при его отрыве от нейтральной молекулы и становится больше при диссоциации по каждой следующей ступени.

Если обозначить концентрацию электролита, распадающегося на два иона, через c в, а степень его диссоциации в данном растворе через α, то концентрация каждого из ионов будет c в α, а концентрация недиссоциированных молекул c в (1 – α). Тогда уравнение константы протолиза К к,ω (либо константы кислотности, либо константы основности) принимают вид:

Это уравнение выражает закон разбавления Оствальда. Оно даeт возможность вычислить степень диссоциации при различных концентрациях электролита, если известна его константа диссоциации. Пользуясь этим уравнением, можно также вычислить константу диссоциации электролита, зная его степень диссоциации при той или иной концентрации.

Для растворов, в которых диссоциация электролита очень мала, уравнение законно Оствальда упрощается. Поскольку в таких случаях α <<, то величиной α в знаменателе уравнения для К к,ω можно пренебречь. При этом уравнение принимает вид.

  • 10. Молекулярные кристаллы. Водородные связи и межмолекулярные взаимодействия.
  • 11. Атомные кристаллы.
  • 12. Зонная теория проводимости кристаллов.
  • 13. Полупроводники.
  • 14. Количественные характеристики чистого вещества: экспериментальный способ их определения и расчета.
  • 15. Растворы. Способы выражения концентрации раствора: массовая доля, мольная доля, молярная концентрация.
  • 16. Молярная концентрация эквивалента. Эквивалент. Фактор эквивалентности и особенности его расчета. Молярная масса эквивалента.
  • 17. Фазовые переходы. Фазовые равновесия. Фазовые диаграммы и их анализ.
  • 18.Коллегативные свойства растворов.
  • 19.Термохимическая теплота. Тепловой эффект химической реакции и фазового перехода.
  • 20. Закон Гесса и его следствия.
  • 21. Зависимость теплового эффекта от температуры. Уравнение Кирхгоффа
  • 22. Экспериментальное определение теплового эффекта химической реакции.
  • 23. Основные понятия химической кинетики: Скорость химической реакции, молекулярность, простая и сложная с точки зрения химической кинетики реакции. Основной закон (постулат) химической кинетики.
  • 24.Влияние температуры на скорость химической реакции
  • 25. Катализ и его особенности
  • 26. Экспериментальный способ определения порядка и константы скорости реакции.
  • 27. Электролиты. Теория электролитической диссоциации с. Аррениуса.
  • 28.Теория сильных электролитов. Активность. Коэффициент активности. Зависимость коэффициента активности от ионной силы раствора.
  • 29. Слабые электролиты. Константа кислотности и основности. Закон разбалвения Освальда.
  • 30. Вода-слабый электролит. Ионное произведение воды. PH. POh
  • 31.Эксперементальное определение водородного показателя
  • 32.Расчет рН в растворе сильного электролита.
  • 33.Расчет рН в растворе слабого электролита.
  • 34.Гетерогенные равновесия в растворе электролита. Произведение растворимости.
  • 35. Реакции ионного обмена и их применение в качественном анализе
  • 36.Гидролиз солей.
  • 37.Кислотно-основное титрование. Определение концентрации раствора на основе метода титрования.
  • 38.Кривые титрования. Выбор индикатора по кривой титрования.
  • 39.Степень окисления.Окислительно-восстановительные реакции.
  • 40.Влияние среды на протекания окислительно-восстановительных процессов (на примере иона MnO4)
  • 29. Слабые электролиты. Константа кислотности и основности. Закон разбалвения Освальда.

    Слабые электролиты - химические соединения, молекулы которых даже в сильно разбавленных растворах незначительно диссоциированны на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым электролитам относится большинство органических кислот и многие органические основания в водных и неводных растворах.

    Слабыми электролитами являются:

      почти все органические кислоты и вода;

      некоторые неорганические кислоты: HF, HClO, HClO 2 , HNO 2 , HCN, H 2 S, HBrO, H 3 PO 4 ,H 2 CO 3 , H 2 SiO 3 , H 2 SO 3 и др.;

      некоторые малорастворимые гидроксиды металлов: Fe(OH) 3 , Zn(OH) 2 и др.

    Константа диссоциации кислоты (Ka) - константа равновесия реакции диссоциации кислоты на ион водорода и анион кислотного остатка. Для многоосновных кислот, диссоциация которых проходит в несколько стадий, оперируют отдельными константами для разных стадий диссоциации, обозначая их как K a1 , K a2 и т. д.

    Пример расчета Двухосновной кислоты:

    Чаще вместо самой константы диссоциации K используют величину pK, которая определяется как отрицательный десятичный логарифм самой константы:

    Основание - это химическое соединение, способное образовывать ковалентную связь с протоном (основание Брёнстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса). В узком смысле под основаниями понимают основные гидроксиды - сложные вещества, при диссоциации которых в водных растворах отщепляется только один вид анионов - гидроксид-ионы OH-.

    Теория Брёнстеда - Лоури позволяет количественно оценить силу оснований, то есть их способность отщеплять протон от кислот. Это принято делать при помощи константы основности Kb - константы равновесия реакции основания с кислотой сравнения, в качестве которой выбрана вода. Чем выше константа основности, тем выше сила основания и тем больше его способность отщеплять протон. Часто константу основности выражают в виде показателя константы основности pKb. Например, для аммиака как основания Брёнстеда можно записать:

    Закон разбавления Оствальда - соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:

    Здесь К - константа диссоциации электролита, с - концентрация, λ и λ∞ - значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства где α - степень диссоциации.

    30. Вода-слабый электролит. Ионное произведение воды. PH. POh

    Ио́нное произведе́ние воды́ - произведение концентраций ионов водорода Н+ и ионов гидроксила OH− в воде или в водных растворах, константа автопротолиза воды.

    Вода, хотя и является слабым электролитом, в небольшой степени диссоциирует:

    Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле:

      Концентрация ионов гидроксония (протонов);

      Концентрация гидроксид-ионов;

      Концентрация воды (в молекулярной форме) в воде;

    Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л.

    При 25 °C константа диссоциации воды равна 1,8·10−16моль/л. Уравнение (1) можно переписать как:

    Обозначим произведение K· = K в = 1,8·10 −16 моль/л·55,56 моль/л = 10 −14 моль²/л² = · (при 25 °C).

    Константа K в, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды. Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и K в, при понижении температуры - наоборот.

    Водоро́дный показа́тель, pH - мера активности ионов водорода в растворе, и количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на один литр:

    Несколько меньшее распространение получила обратная pH величина - показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH - :

    Связывающее уроавнение: