Максимальная скорость ферментативной реакции. Скорость ферментативной реакции




Кинетика ферментативных реакций. Этот раздел энзимологии изучает влияние хими ческих и физических факторов на скорость ферментативной реакции. В 1913 г. Михаэлис и Ментен создали теорию ферментативной кинетики, исходя из того, что фермент (Е) вступает во взаимодействие с субстратом (S) с образованием промежуточного ферментсубстратного комплекса (ЕS), который далее распадается на фермент и продукт реакции по уравнению:

Каждый этап взаимодействия субстрата с ферментом характеризуется своими константами скорости. Отношение суммы констант скорости распада ферментсубстратного комплекса к константе скорости образования ферментсубстратного комплекса называется константой Михаелиса (Кm). Она определят сродство фермента к субстрату. Чем ниже константа Михаелиса, тем выше сродство фермента к субстрату, тем выше скорость ка тализируемой им реакции. По величине Кm каталитические реакции можно поделить на быстрые (Кm 106 моль/л и меньше) и медленные (Кm 102 до 106).

Скорость ферментативной реакции зависит температуры, реакции среды, концентрации реагирующих веществ, количества фермента и других факторов.

1. Рассмотрим зависимость скорости реакции от количест ва фермента. При условии избытка субстрата скорость реакции пропорциональна количеству фермента, но при избыточном количестве фермента прирост скорости реакции будет сни жаться, поскольку уже не будет хватать субстрата.

2. Скорость химических реакций пропорциональна концентрации реагирующих ве ществ (закон действующих масс). Этот закон применим и для ферментативных реакций, но с определенными ограничениями. При постоян

ных количествах фермента скорость реакции действительно пропорциональна концентрации субстрата, но, только в области низких концен траций. При высоких концентрациях субстрата наступает насыщение фермента субстратом, то есть наступает такой момент, когда уже все мо лекулы фермента задействованы в каталитическом процессе и прироста скорости реакции не будет. Скорость реакции выходит на макси мальный уровень (Vmax) и дальше уже не зависит от концентрации субстрата. Зависимость скорости реакции от концентрации субстрата следует определять в той части кривой, кото рая ниже Vmax. Технически легче определить не максимальную скорость, а ½ Vmax. Этот параметр является главной характеристикой ферментативной реакции и дает возможность определить константу Михаелиса (Кm).

Кm (константа Михаэлиса) – это такая концентрация субстрата, при которой ско рость ферментативной реакции равна по ловине максимальной. Отсюда выводится уравнение Михаэлиса–Ментена скорости ферментативной реакции.

Скорость ферментативной реакции

Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Скорость определяют по углу наклона касательной к кривой на начальной стадии реакции.

Рис. 2 Скорость ферментативной реакции.

Чем круче наклон, тем больше скорость. Со временем скорость реакции обычно снижается, по большей части в результате снижения концентрации субстрата.

Факторы, влияющие на ферментативную активность

Действие Ф. зависит от ряда факторов: температуры, реакции среды (pH), концентрации фермента, концентрации субстрата, от присутствия специфических активаторов и неспецифических или специфических ингибиторов.

Концентрация фермента

При высокой концентрации субстрата и при постоянстве других факторов скорость ферментативной реакции пропорциональна концентрации фермента.

Рис. 3 Зависимость скорости ферментативной реакции от концентрации фермента.

Катализ осуществляется всегда в условиях, когда концентрация фермента гораздо ниже концентрации субстрата. Поэтому с возрастанием концентрации фермента растет и скорость ферментативной реакции.

Температура

Влияние температуры на скорость ферментативной реакции может быть выражено через температурный коэффициент Q 10: Q 10 = (скорость реакции при (х + 10)°C) / (скорость реакции при х °C)

В пределах 0-40°C Q 10 ферментативной реакции равен 2. Иными словами, при каждом повышении температуры на 10°C скорость ферментативной реакции удваивается.

Рис. 4 Влияние температуры на активность такого фермента, как амилаза слюны.

С повышением температуры движение молекул ускоряется, и у молекул реагирующих веществ больше шансов столкнуться друг с другом. Увеличивается, следовательно, и вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую активность, называется оптимальной. За пределами этого уровня скорость ферментативной реакции снижается, несмотря на увеличение частоты столкновений. Происходит это вследствие разрушения вторичной и третичной структур фермента, иными словами, вследствие того, что фермент претерпевает денатурацию.

Рис. 5 Ход ферментативной реакции при разных температурах.

Когда температура приближается к точке замерзания или оказывается ниже ее, ферменты инактивируются, но денатурации при этом не происходит. С повышением температуры их каталитическая активность вновь восстанавливается.

Поскольку белки в сухом состоянии денатурируются значительно медленнее, чем белки оводненные (в виде белкового геля или раствора), инактивирование Ф. в сухом состоянии происходит гораздо медленнее, чем в присутствии влаги. Поэтому сухие споры бактерий или сухие семена могут выдержать нагревание до гораздо более высоких температур, чем те же споры или семена в увлажненном состоянии.

Концентрация субстрата

При данной концентрации фермента скорость ферментативной реакции возрастает с увеличением концентрации субстрата.

Рис. 6 Зависимость скорости ферментативной реакции от концентрации субстрата.

Теоретическая максимальная скорость реакции V max никогда не достигается, но наступает момент, когда дальнейшее увеличение концентрации субстрата уже не влечет за собой сколько-нибудь заметного изменения скорости реакции. Это следует объяснить тем, что при высоких концентрациях субстрата активные центры молекул Ф. в любой данный момент оказываются практически насыщенными. Таким образом, сколько бы ни было в наличии избыточного субстрата, он может соединиться с Ф. лишь после того, как образовавшийся ранее фермент-субстратный комплекс диссоциирует на продукт и свободный Ф. Поэтому при высоких концентрациях субстрата скорость ферментативной реакции лимитируется и концентрацией субстрата, и временем, которое требуется для диссоциации фермент-субстратного комплекса.

При постоянной температуре любой Ф. работает наиболее эффективно в узких пределах pH. Оптимальным считается то значение pH, при котором реакция протекает с максимальной скоростью.

Рис. 7 Зависимость активности фермента от pH.

При более высоких и более низких pH активность Ф. снижается. Сдвиг pH меняет заряд ионизированных кислотных и основных групп, от которого зависит специфичная форма молекул Ф. В результате изменяется форма молекул Ф., и в первую очередь форма его активного центра. При слишком резких сдвигах pH Ф. денатурирует. Свойственный данному Ф. оптимум pH не всегда совпадает с pH его непосредственного внутриклеточного окружения. Это позволяет предположить, что среда, в которой находится Ф., в какой-то мере регулирует его активность.

ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ КИНЕТИКА

изучает закономерности протекания во времени ферментативных р-ций, а также их механизм; раздел кинетики химической.

Каталитич. цикл конверсии в-ва S (субстрата) в продукт P под действием фермента E протекает с образованием промежут. соед. X i :

где ki - константы скорости отдельных элементарных стадий, образования фермент-субстратного комплекса X 1 (ES, комплекс Михаэлиса).

При данной т-ре скорость р-ции зависит от концентраций фермента, субстрата и состава среды. Различают стационарную, предстационарную и релаксационную кинетику ферментативных р-ций.

Стационарная кинетика. В стационарном состоянии по промежуточным соед. (dX i /dt = 0, i = 1, ..., n ) и при избытке субстрата , где [S] 0 и [E] 0 - начальные концентрации соотв. субстрата и фермента, кинетика процесса характеризуется постоянным, неизменным во времени уровнем концентраций промежут. соед., а выражение для скорости процесса v 0 , наз. начальной стационарной скоростью, имеет вид (ур-ние Михаэлиса- Ментен):

(1)

где значения k кат и К м -> ф-ции констант скорости элементарных стадий и заданы ур-нениями:


Величину k кат наз. эффективной каталитич. константой скорости процесса, параметр К м -> константой Михаэлиса. Значение k кат определяется величинами наиб. медленных стадий каталитич. р-ций и иногда наз. числом оборотов фермента (ферментной системы); k кат характеризует число каталитич. циклов, совершаемых ферментной системой в единицу времени. Наиб. распространены , имеющие значение k кат. для специфич. субстратов в диапазоне 10 2 -10 3 с -1 . Типичные значения константы Михаэлиса лежат в интервале 10 -3 - 10 -4 M.

При больших концентрациях субстрата, когда т. е. скорость р-ции не зависит от концентрации субстрата и достигает постоянной величины, наз. макс. скоростью. Графически ур-ние Михаэлиса - Ментен представляет собой гиперболу. Его можно линеаризовать, используя метод двойных обратных величин (метод Лайнуи-вера - Берка), т. е. строя зависимость 1/vот 1/[S] 0 , или др. методы. Линейная форма ур-ния (1) имеет вид:

(2)

Она позволяет определить графически значения К м и v макс (рис. 1).


Рис. 1. График линейной трансформации ур-ния Михаэлиса - Ментен в двойных обратных величинах (по Лайнуиверу - Берку).

Величина К м > численно равна концентрации субстрата, при к-рой скорость р-ции равна , поэтому К м часто служит мерой сродства субстрата и фермента, однако это справедливо лишь, если

Величины К м > и изменяются в зависимости от значений рН. Это связано со способностью участвующих в катализе групп молекулы фермента изменять свое состояние ионизации и, тем самым, свою каталитич. эффективность. В простейшем случае изменение рН приводит к протонированию или депротонированию, по крайней мере, двух ионизирующихся групп фермента, участвующих в катализе. Если при этом только одна форма фермент-субстратного комплекса (напр., ESH) из трех возможных (ES, ESH и ESH 2) способна превращаться в продукт р-ции, то зависимость скорости от рН описывается ф-лой:


где f = 1 + / и f " = 1 + + K" b /> -т. наз. рН-ф-ции Михаэлиса, а К а, К b и К" a , K" b -> константы ионизации групп аи bсоотв. своб. фермента и фермент-субстратного комплекса. В координатах lg - рН эта зависимость представлена на рис. 2, причем тангенсы углов наклона касательных к восходящей, независимой от рН, и нисходящей ветвям кривой должны быть равны соответственно +1, 0 и -1. Из такого графика можно определить значения рК а групп, участвующих в катализе.


Рис. 2. Зависимость каталитич. константы от рН в логарифмич. координатах.

Скорость ферментативной р-ции не всегда подчиняется ур-нию (1). Один из часто встречающихся случаев - участие в р-ции аллостерич. ферментов (см. Регуляторы ферментов), для к-рых зависимость степени насыщения фермента от [S] 0 имеет негиперболич. характер (рис. 3). Это явление обусловлено кооперативностью связывания субстрата, т. е. когда связывание субстрата на одном из участков макромолекулы фермента увеличивает (положит. кооперативность) или уменьшает (отрицат. кооперативность) сродство к субстрату др. участка.


Рис. З Зависимость степени насыщения фермента субстратом от концентрации субстрата при положительной (I) и отрицательной (II) кооперативности, а также в ее отсутствии (III).

Предстационарная кинетика. При быстром смешении р-ров фермента и субстрата в интервале времен 10 -6 -10 -1 с можно наблюдать переходные процессы, предшествующие образованию устойчивого стационарного состояния. В этом предстационарном режиме при использовании большого избытка субстрата система дифференц. ур-ний, описывающая кинетику процессов, линейна. Решение данного типа системы линейных дифференц. ур-ний дается суммой экспоненциальных членов. Так, для кинетич. схемы, представленной выше, кинетика накопления продукта имеет вид:


где A i -> , b, а n -> ф-ции элементарных констант скорости; -корни соответствующего характеристич. ур-ния.

Величина, обратная , наз. характеристич. временем процесса:

Для р-ции, протекающей с участием nпромежут. соед., можно получить nхарактеристич. времен.

Исследование кинетики ферментативной р-ции в предстационарном режиме позволяет получить представление о детальном механизме каталитич. цикла и определить константы скорости элементарных стадий процесса.

Экспериментально кинетику ферментативной р-ции в предстационарном режиме исследуют с помощью метода остановленной струи (см. Струевые кинетические методы), позволяющего смешивать компоненты р-ции в течение 1 мс.

Релаксационная кинетика. При быстром возмущающем воздействии на систему (изменение т-ры, давления, электрич. поля) время, к-рое необходимо системе для достижения нового равновесия или стационарного состояния, зависит от скорости процессов, определяющих каталитич. ферментативный цикл.

Система ур-ний, описывающая кинетику процесса, линейна, если смещение от положения равновесия невелико. Решение системы приводит к зависимостям концентраций компонентов разл. стадий процесса в виде суммы экспоненциальных членов, показатели экспонент к-рых имеют характер времен релаксаций. Результатом исследования является спектр времен релаксации, соответствующий числу промежут. соед., участвующих в процессе. Величины времен релаксаций зависят от констант скорости элементарных стадий процессов.

Релаксационные методы кинетики позволяют определить константы скорости отдельных элементарных стадий трансформации интермедиатов. Методы изучения релаксационной кинетики имеют разл. разрешающую способность: поглощение ультразвука - 10 -6 -10 -10 с, температурный скачок - 1O -4 -10 -6 с, метод электрич. импульса - 10 -4 -10 -6 с, скачок давления - 10 -2 с. При исследовании кинетики ферментативных р-ций наиб, применение нашел метод температурного скачка.

Макрокинетика ферментативных процессов. Развитие методов получения гетерогенных катализаторов путем иммобилизации ферментов на разл. носителях (см. Иммобилизованные ферменты )обусловило необходимость анализа кинетики процессов с учетом массопереноса субстрата. Теоретически и экспериментально исследованы закономерности кинетики р-ций с учетом эффектов диффузионного слоя и для систем с внутридиффузионными затруднениями при распределении фермента внутри носителя.

В условиях, когда на кинетику процесса влияет диффузионный перенос субстрата, каталитич. эффективность системы уменьшается. Фактор эффективности равен отношению плотности потока продукта в условиях протекания ферментативной р-ции с диффузионно пониженной концентрацией субстрата к потоку, к-рый мог бы реализоваться в отсутствие диффузионных ограничений. В чисто диффузионной области, когда скорость процесса определяется массопереносом субстрата, фактор эффективности для систем с внешнедиффузи-онным торможением обратно пропорционален диффузионному модулю :


где толщина диффузионного слоя, D - коэф. диффузии субстрата.

Для систем с внутридиффузионным торможением в р-циях первого порядка


где Ф т - безразмерный модуль (модуль Тиле).

При анализе кинетич. закономерностей в ферментативных реакторах широкое теоретич. и эксперим. развитие получили "идеальные" модели реакторов, проточный (проточный реактор идеального перемешивания), проточный реактор с идеальным вытеснением, мембранный реактор.

Кинетика полиферментных процессов. В организме (клетке) ферменты действуют не изолированно, а катализируют цепи трансформации молекул. Р-ции в полиферментных системах с кинетич. точки зрения можно рассматривать как последоват. процессы, специфич. особенностью к-рых является ферментами каждой из стадий:

где , соотв. макс, скорость процесса и константа Михаэлиса i -й стадии р-ции соответственно.

Важная особенность процесса - возможность образования устойчивого стационарного состояния. Условием-его возникновения может служить неравенство > v 0 , где v 0 - скорость лимитирующей стадии, характеризуемой наименьшей константой скорости и тем самым определяющей скорость всего последоват. процесса. В стационарном состоянии концентрации метаболитов после лимитирующей стадии меньше константы Михаэлиса соответствующего фермента.

Специфич. группу полиферментных систем составляют системы, осуществляющие окислит.-восстановит. р-ции с участием белковых переносчиков электронов. Переносчики образуют специфич. структуры, комплексы с детерминированной последовательностью переноса электрона. Кинетич. описание такого рода систем рассматривает в качестве независимой переменной состояния цепей с разл. степенью заселенности электронами.

Применение. Ф. р. к. широко используют в исследовательской практике для изучения механизмов действия ферментов и ферментных систем. Практически значимая область науки о ферментах - инженерная энзимология, оперирует понятиями Ф. р. к. для оптимизации биотехнол. процессов.

Лит.: Полторак О. M., Чухрай E. С, Физико-химические основы ферментативного катализа, M., 1971; Березин И. В., Мартинек К, Основы физической химии ферментативного катализа, M., 1977; Варфоломеев С. Д., Зайцев С. В., Кинетические методы в биохимических исследованиях, M.. 1982. С. Д. Варфоломеев.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ФЕРМЕНТАТИВНЫХ РЕАКЦИЙ КИНЕТИКА" в других словарях:

    Каталитич. р ция циклич. процесс, складывающийся из ряда элементарных р ций, скорости к рых описываются действующих масс законом. Этот закон имеет простую форму для идеальных газовых смесей, идеальных р ров и идеальных поверхностных слоев.… … Химическая энциклопедия

    Кинетика химических реакций, учение о химических процессах о законах их протекания во времени, скоростях и механизмах. С исследованиями кинетики химических реакций связаны важнейшие направления современной химии и химической… … Большая советская энциклопедия

    КИНЕТИКА ХИМИЧЕСКАЯ - (от греч. kinesis движение), отдел теоретической химии, посвященный изучению законов хим. реакций. Можно наметить несколько типов хим. взаимодействий и прежде всего отличать реакции, протекающие в гомогенной (однородной) среде, от реакций,… … Большая медицинская энциклопедия

    - (биокатализ), ускорение биохим. р ций при участии белковых макромолекул, называемых ферментами (энзимами). Ф. к. разновидность катализа, хотя термин ферментация (брожение)известен с давних времен, когда еще не было понятия хим. катализа. Первое… … Химическая энциклопедия

    - (от лат. re приставка, означающая обратное действие, и actio действие), превращения одних в в (исходных соед.) в другие (продукты р ции) при неизменяемости ядер атомов (в отличие от ядерных реакций). Исходные соединения в Р. х. иногда наз.… … Химическая энциклопедия

    - (от лат. fermentum закваска) (энзимы), белки, выполняющие роль катализаторов в живых организмах. Осн. ф ции Ф. ускорять превращение в в, поступающих в организм и образующихся при метаболизме (для обновления клеточных структур, для обеспечения его … Химическая энциклопедия

    - (от греч. pharmakon лекарство и kinetikos приводящий в движение), изучает кинетич. закономерности процессов, происходящих с лек. ср вом в организме. Осн. фармакокинетич. процессы: всасывание, распределение, метаболизм и экскреция (выведение).… … Химическая энциклопедия

Введение

Одним из характерных проявлений жизни является способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Зависимость скорости ферментативной реакции от концентрации субстрата

фермент субстрат биохимический ингибитор

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:

константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k-1) реакций, т.е.

В состоянии равновесия скорость прямой реакции:

v+1 = k+1[А]*[B]

равна скорости обратной реакции:

v-1 = k-1[С]*[D],

т.е. v+1 = v-1

соответственно k+1[А]*[B] = k-1[С]*[D],

Рис. 1.

реакции от концентрации субстрата при постоянной концентрации

фермента

а - реакция первого порядка (при [S]<Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxi скорость реакции не зависит от концентрации субстрата.

Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции

т.е. KS равна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KS зависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.

При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 1) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S -> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:

где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата; k" - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).

При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [S]. В этом случае реакция подчиняется кинетике нулевого порядка v=k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 1).

Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v - наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax - максимальная скорость реакции при полном насыщении фермента субстратом.

Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KS скорость реакции является максимальной, т.е. v=Vmax (реакция нулевого порядка, см. рис. 1). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка). Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции

и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:

где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:

Рис. 2. - Кривая уравнения Михаэлиса-Ментен: гиперболическая

зависимость начальных скоростей катализируемой ферментом реакции

от концентрации субстрата

В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1 представляет собой константу диссоциации фермент-субстратного комплекса KS, тогда:

Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KS на величину k+2/k+1.

Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции V составляет половину от максимальной Vmax, т.е. если V = 1/2 Vmaх. Подставляя значение V в уравнение Бриггса-Холдейна, получаем:

разделив обе части уравнения на Vmах, получим

Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.

Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 2). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.

Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата , неудобно, поскольку максимальная скорость Vmax является в данном случае асимптотической величиной и определяется недостаточно точно.

Рис. 3.

Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Холдейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если

то после преобразования получаем уравнение:

которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии:

Если теперь в соответствии с этим уравнением построить график в координатах 1/v(y) от l/[S](x), то получим прямую линию (рис. 3), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax (обратная величина максимальной скорости).

Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 3). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.

Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].

Следует отметить некоторые ограничения применения уравнения Михаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая

Рис. 4.

кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4) наподобие кривой насыщения гемоглобина кислородом. Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:

где К" - константа ассоциации; n - число субстрат связывающих центров.

С повышением температуры среды скорость ферментативной реакции увеличивается, достигая максимума при какой-то оптимальной температуре, а затем падает до нуля. Для химических реакций существует правило, что при повышении температуры на 10°С скорость реакции увеличивается в два-три раза. Для ферментативных реакций этот температурный коэффициент ниже: на каждые 10°С скорость реакции увеличивается в 2 раза и даже меньше. Наступающее вслед за этим снижение скорости реакции до нуля свидетельствует о денатурации ферментного блока. Оптимальные значения температуры для большинства ферментов находятся в пределах 20 - 40 0 С. Термолабильность ферментов связана с их белковым строением. Некоторые ферменты денатурируют уже при температуре около 40 0 С, но основная часть их инактивируется при температурах выше 40 - 50 0 С. Отдельные ферменты инактивирует холод, т.е. при температурах, близких к 0°С, наступает денатурация.

Повышение температуры тела (лихорадочное состояние) ускоряет биохимические реакции, катализируемые ферментами. Нетрудно подсчитать, что увеличение температуры тела на каждый градус повышает скорость реакции примерно на 20%. При высоких температурах около 39-40°С расточительное использование эндогенных субстратов в клетках больного организма обязательно требуется восполнять их поступление с пищей. Кроме того, при температуре порядка 40°С часть весьма термолабильных ферментов может денатурироваться, что нарушает естественный ход биохимических процессов.

Низкая температура вызывает обратимую инактивацию ферментов вследствие незначительного изменения его пространственной структуры, но достаточного для нарушения соответствующей конфигурации активного центра и молекул субстрата.

Зависимость скорости реакции от рН среды

Для большинства ферментов имеется определенное значение рН, при котором их активность максимальна; выше и ниже этого значения рН активность этих ферментов уменьшается. Однако не во всех случаях кривые, описывающие зависимость активности фермента от рН, имеют колоколообразную форму; иногда эта зависимость может выражаться также прямой. Зависимость скорости ферментативной реакции от рН главным образом свидетельствует о состоянии функциональных групп активного центра фермента. Изменение рН среды влияет на ионизацию кислых и основных групп аминокислотных остатков активного центра, которые участвуют или в связывании субстрата (в контактном участке), или в его превращении (в каталитическом участке). Поэтому специфическое влияние рН может быть вызвано или изменением сродства субстрата к ферменту, или изменением каталитической активности фермента, или обеими причинами вместе.

Большинство субстратов имеют кислотные или основные группы, поэтому рН влияет на степень ионизации субстрата. Фермент предпочтительно связывается или с ионизированной, или с неионизированной формой субстрата. Очевидно, при оптимальном рН и функциональные группы активного центра находятся в наиболее реакционноспособном состоянии, и субстрат находится в форме, предпочтительной для связывания этими группами фермента.

При построении кривых, описывающих зависимость активности фермента от рН, измерения при всех значениях рН обычно проводят в условиях насыщения фермента субстратом, поскольку величина K m для многих ферментов изменяется с изменением рН.

Кривая, характеризующая зависимость активности фермента от рН, может иметь особенно простую форму в тех случаях, когда фермент действует на электростатически нейтральные субстраты или субстраты, у которых заряженные группы не играют существенной роли в каталитическом акте. Примером таких ферментов служит папаин, а также инвертаза, катализирующая гидролиз нейтральных молекул сахарозы и сохраняющая постоянную активность в интервале рН 3,0-7,5.

Значение рН, соответствующее максимальной активности фермента, не обязательно совпадает со значением рН, характерным для нормального внутриклеточного окружения этого фермента; последнее может быть как выше, так и ниже оптимума рН. Это позволяет предположить, что влияние рН на активность фермента может быть одним из факторов, ответственных за регулирование ферментативной активности внутри клетки. Поскольку в клетке содержатся сотни ферментов, и каждый из них по-разному реагирует на изменение рН, значение рН внутри клетки является, возможно, одним из важных элементов в сложной системе регуляции клеточного метаболизма.