Колебательная спектроскопия. Колебательные спектры двухатомных молекул Смотреть что такое "колебательные спектры" в других словарях




    Инфракрасная спектроскопия (ИКС) принадлежит к обширной группе методов молекулярной спектроскопии и основана на избирательном поглощении излучения в инфракрасной области (0.8 – 1000 мкм) спектра

    Поглощать инфракрасное (ИК) излучение могут только те молекулы веществ и соединений, у которых изменяется дипольный момент при колебаниях атомов

    ИК излучение расходуется только на изменение колебательной и вращательной энергии молекулы, не вызывая из-за недостатка поглощаемой энергии (hν) электронных переходов

    ИК спектры более сложные, чем электронные спектры в видимой области, поскольку большая часть поглощенной энергии затрачивается на колебательные процессы

    ИК спектры молекул характеризуются высокой информативностью

Обычно для изображения ИК-спектров по оси абсцисс откладывают частоту , волновое число , реже - длину волны .

Длина волны () и частота () связаны между собой соотношением:

где С – скорость распространения излучения в определенной среде.

Для характеристики электромагнитного излучения применяется также волновое число (,  /) – величина, обратная длине волны:

Оно показывает, сколько волн умещается в единице длины, чаще всего в 1 см; в этом случае размерность волнового числа [см –1 ]. Часто волновое число называют частотой, хотя следует признать, что это не вполне корректно. Они пропорциональны друг другу.

ИК - область в общем электромагнитном спектре занимает диапазон длин волн от 2 до 50 мкм (волновое число 5000 - 200 см -1).

Интенсивность поглощения ИК-излучения, как правило, выражают величиной пропускания (Т):

где I– интенсивность излучения, прошедшего через образец;

I 0 – интенсивность падающего излучения.

Инфракрасная спектроскопия является универсальным методом определения важных функциональных групп, а также структурных фрагментов в небольших количествах вещества при любом его агрегатном состоянии.

Круг вопросов, так или иначе связанных с использованием ИК-спектроскопии, чрезвычайно широк.

С помощью ИК-спектроскопии можно проводить идентификацию веществ, структурно-групповой анализ, количественный анализ, изучение внутри- и межмолекулярных взаимодействий, установление конфигурации, изучение кинетики реакций и т.д. Современные автоматические ИК-спектрофотометры позволяют очень быстро получить спектр поглощения, причем от оператора требуется минимум специальных знаний и навыков. Рассмотрим причины поглощения ИК-излучения молекулами.

Колебания атомов в молекуле

Поглощение инфракрасного излучения веществом вызывает переходы между колебательными уровнями основного электронного состояния. При этом изменяются также и вращательные уровни. Поэтому ИК-спектры являются колебательно-вращательными .

Химическую связь в двухатомной молекуле можно упрощенно представить в виде упругой пружины. Тогда ее растяжение и сжатие будет моделировать колебание атомов в молекуле. Для гармонического осциллятора возвращающая сила пропорциональна величине смещения ядер из положения равновесия и направлена в сторону, противоположную смещению:

где К – коэффициент пропорциональности, который называется силовой постоянной и характеризует жесткость связи (упругость связи).

Из законов классической механики известно, что частота колебаний такой системы связана с силовой постоянной К и с массами атомов (m 1 и m 2) следующим соотношением:

, (8.1)

где  – приведенная масса ,
.

Силовые постоянные одинарных, двойных и тройных связей соотносятся приблизительно как 1: 2: 3.

Из соотношения (8.1) следует, что частота колебаний возрастает с увеличением прочности связи (кратности связи) и с уменьшением масс атомов.

Т.е. частота зависит от массы атомов: легче атом – выше частота.

С-H (3000 см -1), С-D (2200 см -1), C-O (1100 см -1), C-Cl (700 см -1).

Частота зависит от энергии связи: (связь прочнее – выше частота)

С≡O (2143 см -1), C=O (1715 см -1), C-O (1100 см -1).

Если считать, что в первом приближении для двухатомной молекулы колебания являются гармоническими, и тем самым такая молекула уподобляется гармоническому осциллятору, то величина полной энергии колебания подчиняется основному квантовому условию:

, (8.2)

где  – колебательное квантовое число, принимающее значения целых чисел: 0, 1, 2, 3, 4 и т.д.;

 0 – частота основного колебания (основной тон), определяемая по уравнению (8.1).

Выражению (8.2) отвечает система равноотстоящих уровней энергии (рис.8.1).

Следует отметить, что при  = 0 Е кол  0 (Е = 1/2 h 0).

Это значит, что колебания ядер в молекуле не прекращаются, и даже в низшем колебательном состоянии молекула обладает определенным запасом колебательной энергии.

При поглощении кванта света h молекула будет переходить на более высокие энергетические уровни. Известно, что энергия поглощенного кванта равна разности энергий двух состояний:

h = Е  + 1 – Е  (8.3)

В свою очередь, разность энергий для двух энергетических уровней, как следует из уравнения (8.1.2), составляет:

Е  + 1 – Е  = h 0 (8.4)

При сравнении соотношений (8.3) и (8.4) видно, что частота поглощенного излучения () равна основной колебательной частоте ( 0), определяемой уравнением (8.1).

Таким образом, спектр гармонического осциллятора состоит из одной линии или полосы с частотой  0 , которая является собственной частотой осциллятора (рис.8. 1).

Обычно при комнатной температуре большинство молекул находится в нижнем колебательном состоянии, поскольку энергия теплового возбуждения значительно меньше, чем энергия перехода из основного состояния в возбужденное.

Поэтому экспериментально легче всего наблюдать поглощение, соответствующее переходу из основного колебательного состояния ( = 0) в первое возбужденное ( = 1).

Для гармонического осциллятора возможны и другие переходы с изменением квантового числа на единицу, т.е. переходы между соседними уровнями:

 = 1 (8.5)

Наблюдаемая экспериментально инфракрасная полоса поглощения молекул, находящихся в газовой фазе, имеет сложную структуру, поскольку каждое колебательное состояние изолированной молекулы характеризуется своей системой вращательных подуровней (рис. 8.2).

Колебательная спектральная линия из-за наложения вращательных переходов превращается в полосу, состоящую из множества линий, а ИК-спектр представляет собой набор полос поглощения (аналогично тому, как электронный переход обязательно сопровождается колебательными и вращательными переходами, и электронный спектр состоит из полос поглощения). Ширина колебательных полос меньше электронных, поскольку разность энергий вращательных подуровней меньше, чем колебательных. Из всех колебательных переходов наиболее вероятным является переход на ближайший колебательный подуровень. Ему соответствует основная спектральная линия.

Рис. 8.1. Потенциальные кривые, уровни энергии и схематические спектры гармонического (1) и ангармонического (2) осцилляторов

Менее вероятным переходам на более высокие колебательные подуровни отвечают спектральные линии, называемые обертонами . Их частота в 2, 3 и т.д. раз больше, чем частота основной линии, а интенсивность гораздо меньше. Основную линию обозначают , а обертоны 2, 3 и т.д.

Все колебания в молекуле можно разделить на два типа: валентные и деформационные . Если при рассматриваемом колебании происходит главным образом изменение длин связей, а углы между связями меняются мало, то такое колебание называется валентным и обозначается . Валентные колебания могут быть симметричными ( s) и асимметричными ( as).

Необходимое условие колебательного перехода – изменение дипольного момента молекулы при колебаниях атомов. Симметричная молекула, не обладающая дипольным моментом, не может поглотить ИК-излучение. Способность вещества поглощать энергию ИК–излучения зависит от суммарного изменения дипольного момента молекулы при вращении и колебании, т.е. поглощать ИК–излучение может лишь молекула, обладающая электрическим дипольным моментом, величина или направление которого изменяется в процессе колебания и вращения. Дипольный момент означает несовпадение центров тяжести положительных и отрицательных зарядов в молекуле, т. е. электрическую асимметрию молекулы.

Таким образом, не все молекулы способны поглощать инфракрасное излучение. Молекулы, имеющие центр симметрии, лишены дипольного момента и не приобретают его в процессе колебания и, следовательно, в инфракрасном спектре не активны. Примеры таких молекул – двухатомные молекулы с ковалентной связью (H 2 , N 2 , галогены, молекула СО 2 с симметрично-валентными колебаниями атомов и т.д.).

Если при колебаниях молекулы изменяется угол между связями без изменения длины связей, то такие колебания называются деформационными .

Обозначают такие колебания – или . Они также могут быть симметричными ( s ,  s) и асимметричными ( а s ,  а s).

Деформационные колебания подразделяют на веерные, крутильные, ножничные и маятниковые. Такие же категории приемлемы и для описания колебаний отдельных групп..

Каждый тип колебаний характеризуется определенной энергией возбуждения. Валентные колебания отвечают более высоким энергиям, чем деформационные, и, следовательно, полосы валентных колебаний лежат в более коротковолновой области (или при более высоких частотах).

При сообщении молекуле достаточно высокой энергии ядра в молекуле начинают колебаться относительно положения равновесия. Если многоатомную молекулу, которую можно представить в виде материальных точек, в которых сосредоточены массы атомов, соединенных пружинками, раскачать, то она будет совершать сложное движение, так называемое движение Лиссажу . Такое движение можно разложить на сравнительно небольшое число нормальных колебаний, при которых все ядра колеблются в одной фазе и с одной частотой, и которое можно описать набором нормальных координат.

Число нормальных колебаний (или колебательных степеней свободы ) молекулы, состоящей из N атомов, может быть рассчитано как 3N− 5 для линейных молекул и 3N− 6 для нелинейных молекул. При этом расчете из общего числа степеней свободы N-атомной молекулы, равного 3N, вычитаются три степени свободы поступательного движения молекулы как целого и две (для линейной) или три (для нелинейной) степени свободы вращательного движения.

Например, для двухатомной молекулы число колебательных степеней свободы равно 3 ∙ 2 − 5 = 1. Это валентное колебание , связанное с изменением длины связи.

H
Cl

Рисунок 4.7 – Валентное колебание на примере молекулы HCl

В трехатомной линейной молекуле типа XY 2 (например, CO 2) число нормальных колебаний равно 3 ∙ 3 − 5 = 4. Для такой молекулы кроме двух валентных (симметричного ν s и ассиметричного ν as ) есть еще два деформационных колебания δ, связанных с изменением валентного угла в молекуле в двух взаимно перпендикулярных плоскостях.

Простейшей моделью двухатомной колеблющейся молекулы является гармонический осциллятор - система из двух шариков, связанных пружинкой и колеблющихся с постоянной частотой (рисунок 4.8). Колебания в такой молекуле можно рассматривать как происходящие с той же частотой колебания массы, равной приведенной массе молекулы, относительно неподвижной стенки, к которой она присоединена той же пружинкой.

Рисунок 4.8 – Модель гармонического осциллятора

Частота колебаний гармонического осциллятора зависит от силы упругости

Данная зависимость отвечает уравнению параболы. Подставив потенциальную энергию в уравнение Шредингера и решив его, можно получить уравнение для энергии гармонического осциллятора



где - приведенная масса.

Колебательное квантовое число может принимать значения =0, 1, 2 …

Правило отбора для модели гармонического осциллятора .

Энергия нулевого колебательного уровня в модели гармонического осциллятора:

Колебательный спектр гармонического осциллятора представляет собой одну линию с волновым числом, равным волновому числу собственных колебаний (рисунок 4.9 б ):


Рисунок 4.9 – Кривая потенциальной энергии гармонического осциллятора (а )

б )


Рисунок 4.11 – Кривая потенциальной энергии ангармонического осциллятора (а )

и схематичный вид колебательного спектра (б )

В результате подстановки в уравнение Шредингера уравнения потенциальной энергии Морзе

получаем уравнение для колебательной энергии ангармонического осциллятора:

Правило отбора для колебательных переходов:

Приняты обозначения. Поглощение кванта света, приводящее к переходу молекулы с нулевого на первый колебательный уровень, приводит к появлению линии в спектре, называемой основным тоном, но второй – первым обертоном, на третий – вторым обертоном и т.д. (рисунок 4.11 б ). Расстояния между линиями в колебательном спектре молекулы при увеличении волнового числа закономерно уменьшаются. Поскольку большинство молекул при невысоких температурах находятся на нулевом колебательном уровне, то в спектре проявляются переходы с этого уровня. Лишь при существенном увеличении температуры в спектре могут быть обнаружены так называемые «горячие» частоты, отвечающие переходам молекулы с более высоких уровней энергии.

Энергию нулевого колебательного уровня в модели ангармонического осциллятора можно рассчитать по уравнению:

а волновое число отвечающей этому переходу линии в спектре по уравнению (4.65):

(4.65)

Анализ схематичного изображения кривой потенциальной энергии и колебательного спектра ангармонического осциллятора на примере двухатомной молекулы (рисунок 4.11) свидетельствует о том, что с ростом колебательного квантового числа расстояния между уровнями энергии уменьшаются, а линии в спектре, соответствующие поглощению кванта при переходе на уровень , сближаются. Последний переход , отвечающий диссоциации молекулы на атомы, соответствует границе дискретного и сплошного спектра. Соотношение между энергией диссоциации и глубиной потенциальной ямы иллюстрируют рисунок 4.12 и уравнение (4.66)

Рисунок 4.12 – Определение энергии диссоциации из кривой потенциальной

энергии ангармонического осциллятора

Подстановка полученного выражения в уравнение (4.62) дает возможность рассчитать энергию максимального колебательного уровня:

По второму граничному условию получается иное уравнение для энергии диссоциации, дающее, однако, близкие расчетные результаты:

Если силовые постоянные близки , то уравнение еще более упрощается:

для первого обертона

Пример: В инфракрасном спектре поглощения двухатомной молекулы определены положения двух первых самых сильных линий 3962 и 7743 см -1 . Найдите волновое число собственных колебаний, коэффициент ангармоничности и ангармоничность молекулы.

Решение.

Первая линия отвечает основному тону (уравнение (4.75)), вторая – первому обертону (уравнение (4.76)). Составим и решим систему уравнений:

Домножим первое уравнение на 3:

Вычтем из первого уравнения второе:

см -1

Подставим полученное значение, например, в первое уравнение (уравнение для основного тона) и вычислим ангармоничность и далее коэффициент ангармоничности:

Пример: В колебательном спектре молекулы CO в свободном состоянии и в случаях, когда CO адсорбирована на поверхности металлов определены волновые числа основной полосы поглощения. Волновое число собственных колебаниий CO в свободном неадсорбированном состоянии 2169 см -1 . Считая коэффициент ангармоничности во всех случаях одним и тем же, рассчитайте волновые числа собственных колебаний CO, энергию и силовую постоянную связи C=O во всех случаях. Сделайте вывод о характере адсорбции.

Решение.

Основной полосе CO или основному тону отвечает уравнение (4.75). Используем данные для молекулы CO в свободном состоянии для нахождения коэффициента ангармоничности:

Преобразуем уравнение (4.75) относительно и рассчитаем волновые числа собственных колебаний для молекул CO, адсорбированных на металлах:

Энергия связи в молекуле противоположна по физическому смыслу энергии диссоциации. Используем для ее оценки, например, уравнение (4.71):

Энергии диссоциации для молекул CO, адсорбированных на металлах, оцениваем аналогично:

Наконец, Ni:

Для нахождения силовой постоянной перепишем уравнение (4.57):

(4.78)

Вначале оценим приведенную массу молекулы CO:

, где массы ядер углерода и кислорода (в граммах).

Затем рассчитаем силовые постоянные:

для свободной CO:

и для адсорбированной на металлах молекулы CO:

Анализ выполненных вычислений свидетельствует об уменьшении энергии связи и силовой постоянной и, следовательно, об ослаблении связи С=O при адсорбции на металлах.

Решение.

Из предыдущего примера возьмем необходимые данные для неизотопозамещенной молекулы CO, адсорбированной на меди:

волновое число собственных колебаний:

см -1 ,

приведенная масса молекулы CO:

Рассчитаем приведенную массу изотопозамещенной молекулы 13 CO:

Предполагая, что силовые постоянные близки , оценим по уравнению (4.74) отношение волновых чисел собственных колебаний и значение для изотопозамещенной молекулы:

Положение полосы основного тона определим по уравнению (4.75), позаимствовав из предыдущего примера значение коэффициента ангармоничности и положение полосы основного тона для неизотопозамещенной молекулы CO, адсорбированной на меди:

2128 см -1 .

Делаем вывод: изотопный сдвиг в длинноволновую (или низкочастотную) область составляет 2128 - 2082 = 46 см -1 .

4.2.6 Многовариантное задание №12 «Колебательные спектры двухатомных молекул»

1. Напишите квантово-механическое уравнение для расчета энергии колебательного движения двухатомной молекулы как гармонического осциллятора.

2. Напишите квантово-механическое уравнение для расчета энергии колебательного движения двухатомной молекулы как ангармонического осциллятора.

3. Вычислите по определенным изИК-спектра поглощения двухатомной молекулы A основному тону (), первому обертону (), второму обертону () или третьему обертону () (таблица 4.4) волновое число собственных колебаний , коэффициент ангармоничности и ангармоничность .

4. Вычислите волновые числа пропущенных линий в ИК-спектре поглощения двухатомной молекулы A ( , , или ).

5. Определите энергию колебательного движения молекулы A на нулевом колебательном квантовом уровне E 0 (Дж), используя волновое число собственных колебаний и ангармоничность (см. п.3)

6. Выведите уравнение для расчета максимального колебательного квантового числа.

7. Определите максимальное колебательное квантовое число для молекулы A .

8. Определите энергию колебательного движения (Дж) на максимальном колебательном квантовом уровне.

9. Определите энергию диссоциации D 0 молекулы A (кДж/моль).

10. Вычертите график зависимости , выбрав 3-4 значения квантового числа и рассчитав значения E кол. в интервале от 0 до .

11. Укажите на графике энергию колебательного движения на максимальном колебательном квантовом уровнеE max (Дж) и энергию диссоциации D 0 .

12. Вычислите силовую постоянную химической связи двухатомной молекулы A .

13. Вычислите волновое число собственных колебаний изотопозамещенной молекулы B .

14. Определите величину и направление изотопного сдвигадля основного тона.

Таблица 4.4 – Варианты заданий

Вариант Молекула А Под-вариант , м -1 , м -1 , м -1 , м -1 Молекула B
HI - - 2 HI
- - 3 HI
- - 2 H 129 I
- - 3 H 131 I
- - H 129 I
- - H 131 I
HF - 2 HF
3 H 18 F
2 H 18 F
3 HF
H 18 F
2 HF
HCl - 2 HCl
3 HCl
H 37 Cl
3 HCl
2 H 37 Cl
3 H 37 Cl
SO - S 18 O
34 SO
S 1 7 O
36 SO
33 S 1 7 O
33 SO
BCl B 37 Cl
10 BCl
B 37 Cl
10 B 37 Cl
10 BCl
B 37 Cl
NO - N 18 O
N 1 7 O
15 N 18 O
15 NO
15 N 1 7 O
13 NO
CaF Са 18 F
43 Са 18 F
44 Са 18 F
42 СаF
43 СаF
44 СаF

Продолжение таблицы 4.4

Вариант Молекула А Под-вариант , м -1 , м -1 , м -1 , м -1 Молекула B
HBr - 3 HBr
2 HBr
H 77 Br
H 85 Br
H 84 Br
H 82 Br
ClI - 37 ClI
37 Cl 129 I
Cl 129 I
37 Cl 125 I
Cl 125 I
37 ClI
FCl - 18 FCl
F 37 Cl
18 F 37 Cl
F 37 Cl
18 FCl
F 37 Cl
CO - 13 CO
C 17 O
17 CO
C 18 O
14 CO
15 CO
H 2 H 3 HН
3 H 2 Н
H 3 Н
2 HН
2 H 2 Н
3 H 3 Н
SH S 2 H
33 S 2 H
33 S 3 H
34 S 2 H
34 S 3 H
S 3 H
NBr 13 NBr
15 NBr
N 79 Br
15 N 79 Br
13 N 79 Br
N 80 Br

Продолжение таблицы 4.4

Вариант Молекула А Под-вариант , м -1 , м -1 , м -1 , м -1 Молекула B
NS S 13 N
34 SN
S 15 N
36 SN
33 S 15 N
33 SN
SiF Si 18 F
30 SiF
29 Si 18 F
30 Si 18 F
29 SiF
Si 18 F
OH - O 2 H
17 O 2 H
17 OH
O 3 H
18 O 2 H
18 OH
SiN Si 13 N
30 SiN
29 Si 13 N
30 Si 15 N
29 SiN
Si 13 N
CP C 30 P
13 CP
13 C 30 P
C 30 P
13 CP
13 C 30 P
BeS Be 36 S
Be 34 S
Be 33 S
7 BeS
7 Be 33 S
7 Be 36 S
BeO Be 18 O
Be 17 O
Be 18 O
7 BeO
7 Be 18 O
7 Be 17 O

Продолжение таблицы 4.4

Вариант Молекула А Под-вариант , м -1 , м -1 , м -1 , м -1 Молекула B
BeI 7 BeI
7 Be 125 I
7 Be 129 I
7 Be 131 I
Be 125 I
Be 129 I
CN - 13 C N
13 C 15 N
1 4 CN
C 13 N
C 15 N
13 C 13

Вращательные спектры

Рассмотрим вращение двух атомной молекулы вокруг ее оси. Наименьшую энергию молекула имеет при отсутствии вращения. Этому состоянию соответствует вращательное квантовое число j=0. Ближайшему возбужденному уровню (j=1) соответствует определенная скорость вращения. Для перевода молекулы на этот уровень надо затратить энергию Е 1 . При j=2,3,4… скорость вращения в 2,3,4… раза больше, чем при j=0. Внутренняя энергия молекулы возрастает с увеличением скорости вращения и расстояния между уровнями увеличивается. Разность энергий между соседними уровнями все время увеличивается на одну и ту же величину Е 1 . В связи с этим вращательный спектр состоит из отдельных линий; для первой линии ν 1 =Е 1 /ħ, а следующих 2ν 1 , 3 ν 1 и т.д.Разность энергий между вращательными уровнями очень мала, так даже при комнатной температуре кинетическая энергия молекул при их столкновении оказывается достаточной для возбуждения вращательных уровней. Молекула может поглотить фотон и перейти на более высокий вращательный уровень. Так можно исследовать спектры поглощения.

Частота зависит от массы молекулы и ее размеров. При увеличении массы расстояние между уровнями уменьшается и весь спектр смещается в сторону больших длин волн.

Вращательные спектры можно наблюдать у веществ в газообразном состоянии. В жидких и твердых телах вращения образном практически нет. Необходимость перевода анализируемого вещества в газообразное состояние без его разрушения сильно ограничивает использование вращательных спектров(также, как и трудность работы в далекой ИК- области).

Если молекуле сообщить дополнительную энергию, меньшую, чем энергия разрыва связи Е хим, то атомы будут колебаться вокруг положения равновесия, причем амплитуда колебаний будет иметь только определенные значения. В колебательных спектрах наблюдаются полосы, а не отдельные линии (как для атомов или во вращательных спектрах). Дело в том, что энергия молекулы зависит как от положений отдельных атомов, так и от вращения всей молекулы. Так любой колебательный уровень оказывается сложным и расщепляется на ряд простых уровней.

В колебательных спектрах газообразных веществ хорошо видны отдельные линии вращательной структуры. В жидкостях и твердых телах определенных вращательных уровней нет. Так в них наблюдается одна широкая полоса. Колебания многоатомных молекул значительно сложнее, чем 2-х атомных, т.к. число возможных типов колебаний быстро растет с увеличением числа атомов в молекуле.

Например, линейная молекула СО 2 имеет колебания 3-х типов.

Первые 2 типа- валентное(одно симметричное, др.-антисимметричное). При колебаниях третьего типа изменяться валентные углы и атомы смещаются в направлениях, перпендикулярных валентным связям, длина которых остается почти постоянной. Такие колебания называются деформационными. Для возбуждения деформационных колебаний требуется меньше энергии, чем для валентных. Полосы поглощения, связанные с возбуждением деформационных переходов, имеют в 2-3 раза меньшую частоту, чем частоты валентных колебаний. Колебания в СО 2 затрагивают сразу все атомы. Такие колебания называются скелетными. Они характерны только для данной молекулы и соответствующие им полосы не совпадают даже веществ с близким строением.



В сложных молекулах также выделяются колебания в которых участвуют только небольшие группы атомов. Полосы таких колебаний являются характерными для определенных групп и их частоты мало изменяются при изменении строения остальной части молекулы. Так в спектрах поглощения химических соединений легко обнаружить наличие определенных групп.

Итак, любая молекула имеет свой определенный спектр поглощения в ИК-области спектра. Практически невозможно найти 2 вещества с одинаковыми спектрами.

Представляют моделью двух взаимодействующих точечных масс m 1 и m 2 с равновесным расстоянием r е между ними (длина связи), а колебат. движение ядер считается гармоническим и описывается единств, координатой q=r-r e , где r - текущее межъядерное расстояние. Зависимость потенциальной энергии колебат. движения V от q определяют в приближении гармонич. осциллятора [колеблющаяся материальная точка с приведенной массой m =m 1 m 2 /(m 1 +m 2)] как ф-цию V= l / 2 (K e q 2), где К е =(d 2 V/dq 2) q=0 - гармонич. силовая постоянная

Рис. 1. Зависимость потенциальной энергии V гармонического осциллятора (пунктирная кривая) и реальной двухатомной молекулы (сплошная кривая) от межъядерного расстояния r (r с равновесное значение r); горизонтальными прямыми линиями показаны колебат. уровни (0, 1, 2, ... значения колебат. квантового числа), вертикальными стрелками - нек-рые колебат. переходы; D 0 - энергия диссоциации молекулы ; заштрихованная область отвечает сплошному спектру. молекулы (пунктирная кривая на рис. 1). Согласно классич. механике, частота гармонич. колебаний Квантовомех. рассмотрение такой системы дает дискретную последовательность равноотстоящих уровней энергии E(v)=hv e (v+ 1 / 2), где v = 0, 1, 2, 3, ... - колебательное квантовое число, v e - гармонич. колебательная постоянная молекулы (h - постоянная Планка). При переходе между соседними уровнями, согласно правилу отбора D v=1, поглощается фотон с энергией hv= D E=E(v+1)-E(v)=hv e (v+1+ 1 / 2)-hv e (v+ 1 / 2)=hv e , т. е. частота перехода между двумя любыми соседними уровнями всегда одна и та же, причем совпадает с классич. частотой гармонич. колебаний. Поэтому v e наз. также гармонич. частотой. Для реальных молекул кривая потенциальной энергии не является указанной квадратичной ф-циeй q, т. е. параболой. Колебат. уровни все более сближаются по мере приближения к пределу диссоциации молекулы и для модели ангармонич. осциллятора описываются ур-нием: E(v)=, где X 1 - первая постоянная ангармоничности. Частота перехода между соседними уровнями не остается постоянной, и, кроме того, возможны переходы, отвечающие правилам отбора D v=2, 3, .... Частота перехода с уровня v=0 на уровень v=1 наз. основной, или фундаментальной, частотой, переходы с уровня v=0 на уровни v>1 дают обертонные частоты, а переходы с уровней v>0 - т. наз. горячие частоты. В ИК спектре поглощения двухатомных молекул колебат. частоты наблюдаются только у гетероядерных молекул (НСl, NO, CO и т.п.), причем правила отбора определяются изменением их электрич. дипольного момента при колебаниях. В спектрах КР колебат. частоты наблюдаются для любых двухатомных молекул , как гомоядерных, так и гетероядерных (N 2 , O 2 , CN и т.п.), т.к. для таких спектров правила отбора определяются изменением поляризуемости молекул при колебаниях. Определяемые из колебательных спектров гармонич. постоянные К е и v e , постоянные ангармоничности, а также энергия диссоциации D 0 - важные характеристики молекулы , необходимые, в частности, для термохим. расчетов. Изучение колебательно-вращат. спектров газов и паров позволяет определять вращат. постоянные В v (см. Вращательные спектры), моменты инерции и межъядерные расстояния двухатомных молекул . Многоатомные молекулы рассматривают как системы связанных точечных масс. Колебат. движение ядер относительно равновесных положений при неподвижном центре масс в отсутствие вращения молекулы как целого описывают обычно с использованием т. наз. внутр. естеств. координат q i , выбираемых как изменения длин связей, валентных и двугранных углов пространств, модели молекулы . У молекулы , состоящей из N атомов , имеется n=3N - 6 (у линейной молекулы 3N - 5) колебат. степеней свободы. В пространстве естеств. координат q i сложное колебат. движение ядер можно представить п отдельными колебаниями, каждое с определенной частотой v k (k принимает значения от 1 до n), с к-рой меняются все естеств. координаты q i при определенных для данного колебания амплитудах q 0 i и фазах. Такие колебания наз. нормальными. Напр., трехатомная линейная молекула АХ 2 имеет три нормальных колебания:


Колебание v 1 наз. симметричным валентным колебанием (растяжения связей), v 2 - дeфopмaциoнным колебанием (изменение валентного угла), v 3 антисимметричным валентным колебанием. В более сложных молекулах встречаются и др. нормальные колебания (изменения двугранных углов, крутильные колебания, пульсации циклов и т.п.). Квантование колебат. энергии многоатомной молекулы в приближении многомерного гармонич. осциллятора приводит к след, системе колебат. уровней энергии:
где v ek - гармонич. колебат. постоянные, v k - колебат. квантовые числа, d k - степень вырождения уровня энергии по k-му колебат. квантовому числу. Осн. частоты в колебательных спектрах обусловлены переходами с нулевого уровня [все v k =0, колебат. энергия на уровни, характеризуемые

такими наборами квантовых чисел v k , в к-рых только одно из них равно 1, а все остальные равны 0. Как и в случае двухатомных молекул , в ангармонич. приближении возможны также обертонные и "горячие" переходы и, кроме того, т. наз. комбинированные, или
составные, переходы с участием уровней, для к-рых отличны от нуля два или более из квантовых чисел v k (рис. 2).

Рис. 2. Система колебательных термов E/hc (см"; с - скорость света) молекулы Н 2 О и нeк-рые переходы; v 1 , v 2 . v 3 - колебат. квантовые числа.

Интерпретация и применение. Колебательные спектры многоатомных молекул отличаются высокой специфичностью и представляют сложную картину, хотя общее число экспериментально наблюдаемых полос м. б. существенно меньше возможного их числа, теоретически отвечающего предсказываемому набору уровней. Обычно осн. частотам соответствуют более интенсивные полосы в колебательных спектрах. Правила отбора и вероятность переходов в ИК и КР спектрах различны, т.к. связаны соотв. с изменениями электрич. дипольного момента и поляризуемости молекулы при каждом нормальном колебании. Поэтому появление и интенсивность полос в ИК и КР спектрах по-разному зависит от типа симметрии колебаний (отношения конфигураций молекулы , возникающих в результате колебаний ядер, к операциям симметрии , характеризующим ее равновесную конфигурацию). Нек-рые из полос колебательных спектров могут наблюдаться только в ИК или только в КР спектре, другие - с разной интенсивностью в обоих спектрах, а нек-рые вообще экспериментально не наблюдаются. Так, для молекул , не обладающих симметрией или имеющих низкую симметрию без центра инверсии , все осн. частоты наблюдаются с разной интенсивностью в обоих спектрах, у молекул с центром инверсии ни одна из наблюдаемых частот не повторяется в ИК и КР спектрах (правило альтернативного запрета); нек-рые из частот могут отсутствовать в обоих спектрах. Поэтому важнейшее из применений колебательных спектров - определение симметрии молекулы из сопоставления ИК и КР спектров, наряду с использованием др. эксперим. данных. Задаваясь моделями молекулы с разной симметрией , можно заранее теоретически рассчитать для каждой из моделей, сколько частот в ИК и КР спектрах должно наблюдаться, и на основании сопоставления с эксперим. данными сделать соответствующий выбор модели. Хотя каждое нормальное колебание, по определению, является колебат. движением всей молекулы , нек-рые из них, особенно у больших молекул , могут более всего затрагивать лишь к.-л. фрагмент молекулы . Амплитуды смещения ядер, не входящих в этот фрагмент, при таком нормальном колебании очень малы. Па этом основана широко используемая в структурно-аналит. исследованиях концепция т. наз. групповых, или характеристических, частот: определенные функц. группы или фрагменты, повторяющиеся в молекулах разл. соед., характеризуются примерно одними и теми же частотами в колебательных спектрах, по к-рым м.б. установлено их присутствие в молекуле данного в-ва (правда, не всегда с одинаково высокой степенью достоверности). Напр., для карбонильной группы характерна очень интенсивная полоса в ИК спектре поглощения в области ~1700(b 50) см -1 , относящаяся к валентному колебанию . Отсутствие полос поглощения в данной области спектра доказывает, что в молекуле исследуемого в-ва группы нет. В то же время наличие к.-л. полос в указанной области еще не является однозначным доказательством присутствия в молекуле карбонильной группы, т.к. в этой области могут случайно оказаться частоты других колебаний молекулы . Поэтому структурный анализ и определение конформаций по колебат. частотам функц. групп должны опираться на неск. характеристич. частот, а предполагаемая структура молекулы должна подтверждаться данными др. методов (см. Структурная химия). Существуют справочники, содержащие многочисл. структурно-спектральные корреляции; имеются также банки данных и соответствующие программы для информационно-поисковых систем и структурно-аналит. исследований с использованием ЭВМ. Правильной интерпретации колебательных спектров помогает изотопич. замещение атомов , приводящее к изменению колебат. частот. Так, замена