Германий в природе. Германий — редкий и полезный полуметалл




Обращаем Ваше внимание, что прием германия производится нами в любом количестве и виде, в т.ч. виде лома. Продать германий можно, позвонив по телефону в Москве, указанному выше.

Германий - хрупкий полуметалл серебристо-белого цвета, открытый в 1886 году. Это полезное ископаемые не встречается в чистом виде. Оно содержится в силикатах, железной и сульфидных рудах. Некоторые его соединения токсичны. Германий получил широкое распространение в электротехнической промышленности, где пригодились его свойства полупроводника. Незаменим он при производстве инфракрасной и волоконной оптики.

Какими свойствами обладает германий

Это полезное ископаемое имеет температуру плавления 938,25 градусов по Цельсию. Показатели его теплоемкости до сих пор не могут объяснить ученые, что делает его незаменимым во многих областях. Германий обладает способностью увеличивать свою плотность при плавлении. Он имеет превосходные электрофизические свойства, что позволяет назвать его прекрасным непрямозонным полупроводником.

Если говорить о химических свойствах этого полуметалла, то следует отметить, что он обладает устойчивостью к воздействию кислот и щелочей, воды и воздуха. Германий растворяется в растворе перекиси водорода и царской водки.

Добыча германия

Сейчас добывают ограниченное количество этого полуметалла. Его месторождения значительно меньше по сравнению с месторождениями висмута, сурьмы, серебра.

По причине того, что доля содержания этого полезного ископаемого в земной коре достаточно мала, то оно образовывает собственные минералы за счет внедрения в кристаллические решетки других металлов. Наибольшее содержание германия наблюдается в сфалеритах, пираргирите, сульфаните, в цветных и железных рудах. Встречается, но гораздо реже, в месторождениях нефти и каменного угля.

Использование германия

Несмотря на то, что германий обнаружили достаточно давно, использовать в промышленности его начали примерно 80 лет назад. Полуметалл впервые начали применять в военном производстве для изготовления некоторых электронных устройств. В этом случае он нашел применение в качестве диодов. Сейчас ситуация несколько изменилась.

К наиболее популярным сферам применения германия следует отнести:

  • производство оптики. Полуметалл стал незаменимым при изготовлении оптических элементов, к которым следует отнести оптические окна датчиков, призмы, линзы. Здесь пришлись кстати свойства прозрачности германия в инфракрасной области. Полуметалл используют при производстве оптики тепловизионных камер, пожарных систем, приборов ночного видения;
  • производство радиоэлектроники. В этой сфере полуметалл использовали при изготовлении диодов и транзисторов. Однако в 70-х годах германиевые приборы заменили на кремниевые, так как кремний позволил значительно повысить технические и эксплуатационные характеристики выпускаемой продукции. Увеличились показатели стойкости к температурным воздействиям. Кроме того, германиевые приборы в процессе эксплуатации издавали сильный шум.

Текущая ситуация с германием

В настоящее время полуметалл используют в сфере производства СВЧ-устройств. Теллерид германия прекрасно себя зарекомендовал как термоэлектрический материал. Цены на германий сейчас достаточно высокие. Один килограмм металлического германия стоит 1200 долларов.

Скупка германия

Серебристо-серый германий редко встречается. Хрупкий полуметалл отличается полупроводниковыми свойствами, широко применяется для создания современных электроприборов. Он также используется для создания высокоточных оптических приборов и радиотехнического оборудования. Большую ценность германий представляет как в виде чистого металла, так и в виде диоксида.

Компания Goldform специализируется на скупке германия, различного металлического лома, радиодеталей. Мы предлагаем помощь с оценкой материала, с транспортировкой. Вы можете отправить германий по почте и получить свои деньги в полном объеме.

Германий (от латинского Germanium), обозначается «Ge», элемент IV-й группы периодической системы химических элементов Дмитрия Ивановича Менделеева; порядковый номер элемента 32, атомная масса составляет72,59. Германий - твёрдое вещество с металлическим блеском, имеющее серо-белый цвет. Хотя цвет германия - это понятие довольно относительное, здесь все зависит от обработки поверхности материала. Иногда он может быть серым как сталь, иногда серебристым, а иногда и вовсе черным. Внешне германий довольно близок к кремнию. Данные элементы не только похожи между собой, но и обладают во многом одинаковыми полупроводниковыми свойствами. Существенным их отличием является тот факт, что германий более чем в два раза тяжелее кремния.

Германий, встречающийся в природе, является смесью пяти стабильных изотопов, имеющих массовые числа 76, 74, 73, 32, 70. Еще в 1871 году известный химик, «отец» периодической таблицы, Дмитрий Иванович Менделеев предсказал свойства и существование германия. Он называл неизвестный в те времена элемент «экасилицием», т.к. свойства нового вещества были во многом схожи с кремнием. В 1886 году после исследования минерала аргирдит, немецкий сорокавосьмилетний ученый-химик К. Винклер обнаружил в составе природной смеси совершенно новый химический элемент.

Сначала химик хотел назвать элемент нептунием, ведь планета Нептун тоже была предсказана намного раньше, чем открыта, но затем он узнал, что такое название уже использовалось при лжеоткрытии одного из элементов, поэтому Винклер решил отказаться от данного названия. Ученому предложили наименовать элемент ангулярием, что в переводе значит «вызывающий споры, угловатый», но и с этим названием Винклер не согласился, хотя споров элемент №32 вызвал действительно очень много. Ученый по национальности был немцем, вот он и решил в итоге назвать элемент германием, в честь своей родной страны Германии.

Как выяснилось позже, германий оказался ни чем иным, как открытым ранее «экасилицием». Вплоть до второй половины двадцатого века практическая полезность германия была довольно узкой и ограниченной. Индустриальное производство металла началось лишь в результате начала промышленного производства полупроводниковой электроники.

Германий является полупроводниковым материалом, широко применяемым в электронике и технике, а также при производстве микросхем и транзисторов. В радарных установках используются тонкие пленки германия, которые наносятся на стекло и применяются как сопротивления. Сплавы с германием и металлами используются в детекторах и датчиках.

Элемент не обладает такой прочностью как вольфрам или титан, он не служит неисчерпаемым источником энергии как плутоний или уран, электропроводность материала также далеко не самая высокая, да и в промышленной технике главным металлом является железо. Несмотря на это, германий является одной из важнейших составляющих технического прогресса нашего общества, т.к. он еще раньше, даже чем кремний стал использоваться как полупроводниковый материал.

В связи с этим уместно было бы спросить: Что такое полупроводимость и полупроводники? На данный вопрос даже специалисты не могут ответить точно, т.к. можно говорить о конкретно рассматриваемом свойстве полупроводников. Есть и точное определение, но лишь из области фольклора: Полупроводник - проводник на два вагона.

Слиток германия стоит практически столько же, сколько и слиток золота. Металл очень хрупок, почти как стекло, поэтому, уронив такой слиток, есть большая вероятность того, что металл просто разобьется.

Металл германий, свойства

Биологические свойства

Для медицинских нужд германий наиболее широко стали использовать в Японии. Результаты испытаний германийорганических соединений на животных и человека показали, что они способны благотворно влиять на организм. В 1967 году японец доктор К. Асаи обнаружил, что органический германий обладает широким биологическим действием.

Среди всех его биологических свойств следует отметить:

  • - обеспечение переноса кислорода в ткани организма;
  • - повышение иммунного статуса организма;
  • - проявление противоопухолевой активности.

В последствии японские ученые создали первый в мире медицинский препарат с содержанием германия - «Германий - 132».

В России первый отечественный препарат, содержащий органический германий, появился лишь в 2000 году.

Процессы биохимической эволюции поверхности земной коры сказались не лучшим образом на содержании в ней германия. Большая часть элемента была вымыта с суши в океаны, так что содержание его в почве остается довольно низким.

Среди растений, которые обладают способностью абсорбировать германий из почвы, лидером является женьшень (германия до 0,2 %). Германий содержится также в чесноке, камфаре и алоэ, которые традиционно используются в лечении различных человеческих заболеваний. В растительности германий находится в виде полуоксид карбоксиэтила. Сейчас есть возможность синтезировать сесквиоксаны с пиримидиновым фрагментом – органические соединения германия. Данное соединение по своей структуре близко к природному, как в корне женьшеня.

Германий можно отнести к редким микроэлементам. Он присутствует во большом количестве различных продуктов, но в мизерных дозах. Суточная доза потребления органического германия установлено в размере 8-10 мг. Оценка 125-ти пищевых продуктов показала, что ежедневно с пищей в организм поступает около 1,5 мг германия. Содержание микроэлемента в 1 г сырых продуктов составляет около 0.1 – 1.0 мкг. Германий содержится в молоке, томатном соке, лососине, бобах. Но для того, чтобы удовлетворить суточную потребность в германии, следует выпивать ежедневно по 10 литров томатного сока или употреблять в пищу около 5 килограмм лососины. С точки зрения стоимости данных продуктов, физиологических свойств человека, да и здравого смысла тоже употребление такого количества германийсодержащих продуктов не возможно. На территории России около 80-90% населения имеет недостаток германия, именно поэтому были разработаны специальные препараты.

Практические исследования показали, что в организме германия больше всего в током кишечнике, желудке, селезенке, костном мозге и крови. Высокое содержание микроэлемента в кишечнике и желудке говорит о пролонгированном действии процесса всасывания препарата в кровь. Есть предположение, что органический германий ведет себя в крови примерно так же, как и гемоглобин, т.е. имеет отрицательный заряд и участвует в переносе кислорода к тканям. Тем самым он на тканевом уровне предупреждает развитие гипоксии.

В результате многократных опытов было доказано свойство германия активировать Т-киллеры и способствовать индукции гамма интерферонов, подавляющих процесс размножения быстро делящихся клеток. Основным направлением действия интерферонов является противоопухолевая и антивирусная защита, радиозащитные и иммуномодулирующие функции лимфатической системы.

Германий в форме сесквиоксида обладает способностью воздействовать на ионы водорода Н+, сглаживая их губительное действие для клеток организма. Гарантией отличной работы всех систем человеческого организма является бесперебойная поставка кислорода в кровь и все ткани. Органический германий не только доставляет кислород во все точки организма, но и способствует его взаимодействию с ионами водорода.

  • - Германий является металлом, но по хрупкости его можно сравнить со стеклом.
  • - В некоторых справочниках утверждается, что германий имеет серебристый цвет. Но так утверждать нельзя, ведь цвет германия напрямую зависит от способа обработки поверхности металла. Иногда он может казаться практически черным, в других случаях имеет стальной цвет, а иногда он может быть и серебристым.
  • - Германий был обнаружен на поверхности солнца, а также в составе упавших с космоса метеоритов.
  • - Впервые элементоорганическое соединение германия было получено первооткрывателем элемента Клеменсом Винклером из четыреххлористого германия в 1887 году, это был тетраэтилгерманий. Из всех полученных на современном этапе элементоорганических соединений германия ни одно не является ядовитым. В то же время большая часть олово- и свинецорганических микроэлементов, являющихся по своим физическим качествам аналогами германия, токсичны.
  • - Дмитрий Иванович Менделеев предсказал три химических элемента еще до их открытия, в том числе и германий, назвав элемент экасилицием за счет сходства с кремнием. Предсказание известного русского ученого было настолько точным, что просто поразило ученых, в т.ч. и Винклера, открывшего германий. Атомный вес по Менделееву был равен 72, в действительности он составил 72,6; удельный вес по Менделееву составил 5,5 в действительности - 5,469; атомный объем по Менделееву составил 13 в действительности - 13,57; высший окисел по Менделееву EsO2, в реальности - GeO2, удельный вес его по Менделееву составил 4,7, в действительности - 4,703; хлористое соединение по Менделееву EsCl4 - жидкость, температура кипения примерно 90°C, в действительности - хлористое соединение GeCl4 – жидкость, температура кипения 83°C, соединение с водородом по Менделееву EsH4 газообразное, соединение с водородом в действительности - GeH4 газообразное; металлоорганическое соединение по МенделеевуEs(C2H5)4, температура кипения 160 °C, металлоорганическое соединение в реалии - Ge(C2H5)4 температура кипения 163,5°C. Как видно из рассмотренной выше информации, предсказание Менделеева было удивительно точным.
  • - Клеменс Винклер 26 февраля 1886 года начинал письмо Менделееву со слов «Милостивый государь». Он в довольно вежливой форме поведал русскому ученому об открытии нового элемента, названного германием, который по своим свойствам был ничем иным, как за ранее спрогнозированным менделеевским «экасилицием». Ответ Дмитрия Ивановича Менделеева был не менее вежлив. Ученый согласился с открытием своего коллеги, назвав германий «венцом своей периодической системы», а Винклера «отцом» элемента, достойным носить данный «венец».
  • - Германий как классический полупроводник стал ключом к решению проблемы создания сверхпроводящих материалов, которые работают при температуре жидкого водорода, но не жидкого гелия. Как известно водород переходит в жидкое состояние из газообразного при достижении температуры –252,6°C, либо 20,5°К. В 70-е годы была разработана пленка из германия и ниобия,толщина которой составляла всего несколько тысяч атомов. Даная пленка способна сохранять сверхпроводимость даже при достижении температуры 23,2°К и ниже.
  • - При выращивании германиевого монокристалла на поверхность расплавленного германия помещается германиевый кристалл – «затравка», который постепенно поднимается при помощи автоматического устройства, при этом температура расплава немного превышает температуру плавления германия (составляет 937 °C). «Затравка» вращается, чтобы монокристалл, как говорится, «обрастал мясом» со всех равномерно сторон. Необходимо отметить, что во время подобного роста происходит то же, что и в процессе зонной плавки, т.е. в твердую фазу переходит практически один лишь германий, а все примеси остаются в расплаве.

История

Существование такого элемента, как германий, было предсказано еще в 1871 году Дмитрием Ивановичем Менделеевым, за счет своих сходств с кремнием элемент был назван экасилицием. В 1886 году профессор Фрейбергской горной академии открыл аргиродит, новый минерал серебра. Затем данный минерал довольно внимательно исследовал профессор технической химии Клеменс Винклер, проводя полный анализ минерала. Сорокавосьмилетнего Винклера по праву считали лучшим аналитиком Фрейбергской горной академии, именно поэтому ему предоставили возможность исследовать аргиродит.

За довольно короткие сроки профессор смог предоставить отчет о процентном соотношении различных элементов в исходном минерале: серебра в его составе было 74,72%; серы - 17,13%; закиси железа – 0,66%; ртути – 0,31%; окиси цинка – 0,22%.Но почти семь процентов – это была доля некого непонятного элемента, который, похоже, еще не был открыт в то далекое время. В завязи с этим Винклер решил выделить неопознанный компонент аргиродпта, изучить его свойства, и в процессе исследования понял, что на самом деле нашел совершенно новый элемент – это был экасплиций, предсказанный Д.И. Менделеевым.

Однако было бы неправильно подумать, что труды Винклера шли гладко. Дмитрий Иванович Менделеев в дополнение к восьмой главе своей книги «Основ химии» пишет: «Сначала (февраль 1886 года) нехватка материала, а также отсутствие спектра в пламени и растворимость соединений германия серьезно затрудняли исследования Винклера...» Стоит обратить внимание на слова «отсутствие спектра». Но как так? В 1886 году уже существовал широко используемый метод спектрального анализа. При помощи данного метода были открыты такие элементы, как таллий, рубидий, индий, цезий на Земле и гелий на Солнце. Ученые уже знали достоверно, что каждому без исключения химическому элементу свойствен индивидуальный спектр, а тут вдруг отсутствие спектра!

Объяснение данному явлению появилось немного позже. У германия есть характерные спектральные линии. Длина их волн составляет 2651,18; 3039,06 Ǻ и еще несколько. Однако они все лежат в пределах ультрафиолетовой невидимой части спектра, можно считать, удачей, что Винклер - приверженец традиционных методов анализа, ведь именно эти методы привели его к успеху.

Метод получения германия из минерала, который использовал Винклер, довольно близок к одному из современных промышленных методов выделения 32-го элемента. Сначала германий, который содержался в аргароднте, перевели в двуокись. Затем полученный белый порошок нагревался до температуры 600-700 °C в водородной атмосфере. При этом реакция оказалась очевидной: GeO 2 + 2H 2 → Ge + 2H 2 О.

Именно таким методом впервые был получен относительно чистый элемент №32, германий. Сперва Винклер намеревался назвать ванадий нептунием, в честь одноименной планеты, ведь Нептун, как и германий, был сначала предсказан, а только потом найден. Но затем выяснилось, что такое название уже однажды использовалась, нептунием был назван один химический элемент, открытый ложно. Винклер предпочел не компрометировать свое имя и открытие, и отказался от нептуния. Один французский ученый Район предложил, правда, потом он признал свое предложение шуткой, предложил назвать элемент ангулярием, т.е. «вызывающим споры, угловатым», но и это название не понравилось Винклеру. В результате ученый самостоятельно выбрал наименование своему элементу, и назвал его германием, в честь своей родной страны Германии, со временем данное название утвердилось.

До 2-й пол. ХХ в. практическое использование германия оставалось довольно ограниченным. Индустриальное производство металла возникло лишь в связи с развитием полупроводников и полупроводниковой электроники.

Нахождение в природе

Германий можно отнести к рассеянным элементам. В природе элемент вообще не встречается в свободном виде. Общее содержание металла в земной коре нашей планеты по массе составляет 7×10 −4 % %. Это больше чем содержание таких химических элементов, как серебро, сурьма или висмут. Но вот собственные минералы германия довольно дефицитны и весьма редко встречаются в природе. Почти все эти минералы являются сульфосолями, например, германит Cu 2 (Cu, Fe, Ge, Zn) 2 (S, As) 4 , конфильдит Ag 8 (Sn,Ce)S 6 , аргиродит Ag8GeS6 и другие.

Основная часть германия, рассеянного в земной коре, содержится в огромном числе горных пород, а также многих минералов: сульфитные руды цветных металлов, железные руды, некоторые окисные минералы (хромит, магнетит, рутил и другие), граниты, диабазы и базальты. В составе некоторых сфалеритов содержание элемента может достигать нескольких килограммов на тонну, например, в франкеите и сульваните 1 кг/т, в энаргитах содержание германия составляет 5 кг/т, в пираргирите - до 10 кг/т, ну а в других силикатах и сульфидах - десятки и сотни г/т. Небольшая доля германия присутствует практически во всех силикатах, а также в некоторых из месторождений нефти и каменного угля.

Основным минералом элемента является сульфит германия (формула GeS2). Минерал встречается как примесь в сульфитах цинка, других металлов. Важнейшими минералами германия являются: германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , плюмбогерманит (Pb,Ge,Ga) 2 SO 4 (OH) 2 ·2H 2 O, стоттит FeGe(OH) 6 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 и аргиродит Ag 8 GeS 6 .

Германий присутствует на территориях всех без исключения государств. А вот промышленными месторождениями данного металла ни одна из индустриально развитых стран мира не располагает. Германий является очень и очень рассеянным. На Земле большой редкостью считаются минералы данного металла, содержание германия в которых более хотя бы 1%. К таким минералам относятся германит, аргиродит, ультрабазит и др., в том числе и минералы, открытые в последние десятилетия: штотит, реньерит, плюмбогерманит и конфильдит. Месторождения всех этих минералов не способны покрыть потребность современной промышленности в данном редком и важном химическом элементе.

Основная же масса германия рассеяна в минералах других химических элементов, а также содержится в природных водах, в углях, в живых организмах и в почве. Например, содержание германия в обыкновенном каменном угле иногда достигает более 0,1%. Но такая цифра встречается довольно редко, обычно доля германия ниже. А вот в антраците германия почти нет.

Получение

При переработке сульфида германия получают оксид GeО 2 , при помощи водорода его восстанавливают до получения свободного германия.

В промышленном производстве германий добывается в основном как побочный продукт в результате переработки руд цветных металлов (цинковая обманка, цинково-медно-свинцовые полиметаллические концентраты, содержащие 0,001—0,1% германия), золы от сжигания угля, некоторых продуктов коксохимии.

Изначально из рассмотренных выше источников выделяют германиевый концентрат (от 2% до 10% германия) различными способами, выбор которых зависит от состава сырья. На переработке боксирующих углей происходит частичное выпадение германия (от 5% до10%) в надсмольную воду и смолу, от туда он извлекается в комплексе с танином, после он высушивается и обжигается на температуре 400-500°С. В результате получается концентрат, который содержит около 30-40% германия, из него германий выделяют в виде GeCl 4 . Процесс извлечения германия из подобного концентрата, как правило, включает одни и те же стадии:

1) Концентрат хлорируют при помощи соляной кислоты, смесью кислоты и хлора в водной среде либо иными хлорирующими агентами, которые в результате могут дать технический GeCl 4 . С целью очистки GeCl 4 применяется ректификация и экстракция примесей концентрированной соляной кислоты.

2) Осуществляется гидролиз GeCl 4 , продукты гидролиза прокаливают вплоть до получения оксида GeO 2 .

3) GeO восстанавливается водородом или аммиаком до чистого металла.

При получении самого чистого германия, который используется в полупроводниковых технических средствах, проводят зонную плавку металла. Монокристаллический германий, необходимый для полупроводникового производства, обычно получают зонной плавкой либо методом Чохральского.

Способы выделения германия из надсмольных вод коксохимических заводов были разработаны советским ученым В.А. Назаренко. В данном сырье германия не более 0,0003%, однако, при помощи дубового экстракта из них несложно осаживать германий в форме таннидного комплекса.

Основная составляющая танина - это сложный эфир глюкозы, где присутствует радикал мета-дигалловой кислоты, который связывает германий, если даже концентрация элемента в растворе очень мала. Из осадка, можно легко получить концентрат, содержание двуокиси германия в котором до 45%.

Последующие превращения уже будет мало зависеть от вида сырья. Восстанавливается германий водородом (как и у Винклера в 19в.), однако, сначала необходимо выделить окись германия из многочисленных примесей. Удачное сочетание качеств одного соединения германия оказалось очень полезным для решения данной задачи.

Четыреххлористый германий GeCl4. – это летучая жидкость, которая закипает всего при 83,1°C. Поэтому она достаточно удобно очищается дистилляцией и ректификацией (в кварцевых колоннах с насадкой).

GeCl4 почти нерастворим в соляной кислоте. Значит, для его очистки можно применять растворение примесей HCl .

Очищенный четыреххлористый германий обрабатывается водой, очищено при помощи ионообменных смол. Признак нужной чистоты - увеличение показателя удельного сопротивления воды до 15-20 млн Ом·см.

Под действием воды происходит гидролиз GeCl4:

GeCl4 + 2H2O → GeO2 + 4HCl.

Можно заметить, что перед нами «записанное задом наперед» уравнение реакции получения четыреххлористого германия.

После идет восстановление GeO2 при помощи очищенного водорода:

GeO2 + 2 Н2O → Ge + 2 Н2O.

В итоге получают порошкообразный германий, который сплавляется, а затем очищается способом зонной плавки. Данный метод очистки был разработан еще в 1952 г. специально для очистки германия.

Необходимые для придания германию того или иного типа проводимости примеси вводятся на завершающих стадиях производства, а именно при зонной плавке, а также во время выращивания монокристалла.

Применение

Германий является полупроводниковым материалом, применяемым в электронике и технике при производстве микросхем и транзисторов. Тончайшие пленки германия наносятся на стекло, применяют как сопротивление в радарных установках. Сплавы германия с различными металлами используют при производстве детекторов и датчиков. Диоксид германия широко используется в производстве стекол, имеющих свойство пропускать инфракрасное излучение.

Теллурид германия уже очень давно служит стабильным термоэлектрическим материалом, а также как компонент термоэлектрических сплавов (термо- значит э.д.с 50 мкВ/К).Исключительно стратегическую роль играет германий сверхвысокой чистоты в изготовлении призм и линз инфракрасной оптики. Крупнейшим потребителем германия является именно инфракрасная оптика, которую используют в компьютерной технике, системах прицела и наведения ракет, приборах ночного видения, картографировании и исследовании поверхности земли со спутников. Германий также широко используется в оптоволоконных системах (добавка тетрафторида германия в состав стекловолокно), а также в полупроводниковых диодах.

Германий как классический полупроводник стал ключом к решению проблемы создания сверхпроводящих материалов, которые работают при температуре жидкого водорода, но не жидкого гелия. Как известно водород переходит в жидкое состояние из газообразного при достижении температуры -252,6°C, либо 20,5°К. В 70-е годы была разработана пленка из германия и ниобия,толщина которой составляла всего несколько тысяч атомов. Даная пленка способна сохранять сверхпроводимость даже при достижении температуры 23,2°К и ниже.

Путем вплавления в пластинку ГЭС индий, таким образом, создавая область с так называемой дырочной проводимостью, получают выпрямляющее устройство, т.е. диод. Диод обладает свойством пропускать электрический ток в одном направлении: электронной области из из области с дырочной проводимостью. После вплавления индия с обеих сторон ГЭС-пластинки, эта пластинка превращается в основу транзистора. Впервые в мире транзистор из германия был создан еще в 1948 году, а спустя всего двадцать лет подобные приборы выпускались сотнями миллионов.

Диоды на основе германия и триоды стали широко использоваться в телевизорах и радиоприемниках, в самой разной измерительной аппаратуре и счетно-решающих устройствах.

Применяется германия также и в других особо важных областях современной техники: при измерении низких температур, при обнаружении инфракрасного излучения и др.

Для использования метла во всех этих областях требуется германий очень высокой химической и физической чистоты. Химическая чистота – это такая чистота, при которой количество вредных примесей не должно составлять более чем одну десятимиллионную процента (10 –7 %). Физическая чистота означает минимум дислокаций, минимум нарушений кристаллической структуры вещества. Для ее достижения специально выращивается монокристаллический германий. В данном случае весь слиток металла представляет собой всего один кристалл.

Для этого на поверхность расплавленного германия помещается германиевый кристалл – «затравка», который постепенно поднимается при помощи автоматического устройства, при этом температура расплава немного превышает температуру плавления германия (составляет 937 °C). «Затравка» вращается, чтобы монокристалл, как говорится, «обрастал мясом» со всех равномерно сторон. Необходимо отметить, что во время подобного роста происходит то же, что и в процессе зонной плавки, т.е. в твердую фазу переходит практически один лишь германий, а все примеси остаются в расплаве.

Физические свойства

Вероятно, мало кому из читателей данной статьи приходилось наглядно видеть ванадий. Сам элемент довольно дефицитный и дорогой, из него не делают предметов широкого потребления, а начинка их германия, которая бывает в электрических приборах мала настолько, что разглядеть металла не возможно.

В некоторых справочниках утверждается, что германий имеет серебристый цвет. Но так утверждать нельзя, ведь цвет германия напрямую зависит от способа обработки поверхности металла. Иногда он может казаться практически черным, в других случаях имеет стальной цвет, а иногда он может быть и серебристым.

Германий настолько редкий металл, что стоимость его слитка можно сравнивать со стоимостью золота. Германий отличается повышенной хрупкостью, которую можно сопоставить разве что со стеклом. Внешне германий достаточно близок к кремнию. Два этих элемента являются одновременно и конкурентами на звание важнейшего полупроводника, и аналогами. Хотя некоторые технические свойства элементом во многом схожи, что касается и внешнего облика материалов, отличить германий от кремния очень просто, германий тяжелее более чем в два раза. Плотность кремния составляет 2,33 г/см3, а плотность германия - 5,33 г/см3.

Но однозначно о плотности германия нельзя говорить, т.к. цифра 5,33 г/см3 относится к германию-1. Это одна самая важная и самая распространенная модификация из пяти аллотропических модификаций 32-го элемента. Четыре из них кристаллические и одна аморфная. Германий-1 является самой легкой модификацией из четырех кристаллических. Кристаллы его построены точь-в-точь также как и кристаллы алмаза, а = 0,533 нм. Однако если для углерода данная структура является максимально плотной, то у германия существуют и более плотные модификации. Умеренный нагрев и высокое давление (около 30 тысяч атмосфер при 100 °C) преобразует германий-1 в германий-2, структура кристаллической решетки у которого точно такая же, как у белого олова. Походим методом получают германий-3 и германий-4, которые еще более плотные. Все эти «не совсем обычные» модификации превосходят германий-1 не только по плотности, но и по электропроводности.

Плотность жидкого германия составляет 5,557 г/см3 (при 1000°С), темература плавления металла равна 937,5 °С; температура кипения составляет около 2700°С; значение коэффициента теплопроводности равно примерно 60 вт/(м (К), либо 0,14 кал/(см (сек (град) при температуре 25 °С. При обычной температуре хрупок даже чистый германий, но при достижении 550 °С он начинает поддаваться пластической деформации. По минералогической шкале твердость германия составляет от 6 до 6,5; значение коэффициента сжимаемости (в интервале давления от 0 до 120 Гн/м 2 , либо от 0 до 12000 кгс/мм 2) составляет1,4·10—7 м 2 /мн (или 1,4·10-6 см 2 /кгс); показатель поверхностного натяжения равен 0,6 н/м (или 600 дин/см).

Германий является типичным полупроводником с размером ширины запрещенной зоны 1,104·10 -19 , либо 0,69 эв (при температуре 25 °С); у германия высокой чистоты удельное электрическое сопротивление равно 0,60 ом (м (60 ом (см) (25 °С); показатель подвижности электронов равен 3900, а подвижности дырок - 1900 см 2 /в. сек (при 25 °С и при содержании от 8% примесей). Для инфракрасных лучей, длина волны которых более 2 мкм, металл прозрачен.

Германий довольно хрупок, он не поддается ни горячей ни холодной обработке давлением до температуры ниже 550 °С, если же температура становится выше, металл пластичен. Твердость металла по минералогической шкале составляет 6,0-6,5 (германий распиливается на пластины при помощи металлического или алмазного диска и абразива).

Химические свойства

Германий, находясь в химических соединениях обычно проявляет вторую и четвертую валентности, но более стабильны соединения четырехвалентного германия. Германий при комнатной температуре устойчив к действию воды, воздуха, а также растворам щелочей и разбавленным концентратам серной или соляной кислоты, зато элемент довольно легко растворяется в царской водке или щелочном растворе водородной перекиси. Элемент медленно окисляется под действием азотной кислоты. При достижении на воздухе температуры 500-700 °С германий начинает окисляться до оксидов GeO 2 и GeO. (IV) оксид германия - это белый порошок с температурой плавления 1116° C и растворимостью в воде 4,3 г/л (при 20 °С). По своим химическим свойствам вещество амфотерно, растворяется в щелочи, с трудом в минеральной кислоте. Его получают путем проникновения гидратного осадка GeO 3 ·nH 2 O, который выделяется при гидролизе Производные кислоты германия, например,германаты металлов (Na 2 GeO 3 , Li 2 GeO 3 , и др.) – это твердые вещества, имеющие высокие температуры плавления, могут быть получены путем сплавления GeO 2 и других оксидов.

В результате взаимодействия германия и галогенов могут образовываться соответствующие тетрагалогениды. Легче всего реакция способна протекать с хлором и фтором (даже в комнатной температуре), затем с йодом (температура 700-800 °С, присутствие СО) и бромом (при слабом нагревании). Одним из важнейших соединений германия является тетрахлорид (формула GeCl 4). Это бесцветная жидкость с температурой плавления равной 49,5 °С, с температурой кипения 83,1°С и с плотность 1,84 г/см3 (при 20 °С). Вещество сильно гидролизуется водой, выделяя осадок гидратированного оксида (IV). Тетрахлорид получают путем хлорирования металлического германия либо взаимодействием оаксид GeO 2 и концентрированной соляной кислоты. Известны еще и дигалогениды германия с общей формулой GeX 2 , гексахлордигерман Ge 2 Cl 6 , монохлорид GeCl, а также оксихлориды германия (к примеру, СеОСl 2).

При достижении 900-1000 °С с германием энергично взаимодействует сера, образуя дисульфид GeS 2 . Это твердое белое вещество с температурой плавления 825 °С. Возможны также образования моносульфида GeS и аналогичных соединений германия с теллуром и селеном, являющимися полупроводниками. При температуре 1000-1100 °С с германием незначительно реагирует водород, образуя гермин (GeH) Х, являющийся малоустойчивым и легколетучим соединением. Германоводороды ряда Ge n H 2n + 2 до Ge 9 H 20 могут быть образованы путем взаимодействия германидов с разбавленной HCl . Также известен гермилен с составом GeH 2 . Германий не реагирует с азотом непосредственно, но есть нитрид Gе 3 N 4 , который получается при воздействии аммиака на германий (700-800 °С). Германий не взаимодействует с углеродом. Со многими металлами германий образует различные соединения – германиды.

Известно множество комплексных соединения германия, приобретающих все большее значение в аналитической химии элемента германий, а также в процессах получения химического элемента. Германий способен образовывать комплексные соединения с гидроксилсодержащими органическими молекулами (многоатомные спирты, многоосновные кислоты и другие). Существуют и гетерополикислоты германия. Как и другие элементы IV-й группы германий характерно образовывает металлорганические соединения. Примером может послужить тетраэтилгерман (С 2 Н 5) 4 Ge 3 .

Химический элемент германий находится в четвертой группе (подгруппе главной) в таблице элементов Менделеева. Он относится к семейству металлов, его относительная атомная масса составляет 73. По массе содержание германия в земной коре оценивается показателем 0,00007 процента по массе.

История открытия

Химический элемент германий был установлен благодаря прогнозам Дмитрия Ивановича Менделеева. Именно им предсказано существование экасилиция, были даны рекомендации по его поиску.

Считал, что данный металлический элемент находится в титановых, циркониевых рудах. Менделеев пытался своими силами найти данный химический элемент, но его попытки не увенчались успехом. Только спустя пятнадцать лет на прииске, расположенном в Химмельфюрсте, был найден минерал, получивший название аргиродит. Своему названию данное соединение обязано серебру, обнаруженному в этом минерале.

Химический элемент германий в составе был обнаружен только после того, как к исследованиям приступила группа химиков из горной академии г. Фрейберга. Под руководством К. Винклера они выяснили, что на долю оксидов цинка, железа, а также на серу, ртуть приходится только 93 процента минерала. Винклер предположил, что оставшиеся семь процентов приходится на неведомый в то время химический элемент. После проведения дополнительных химических экспериментов был обнаружен германий. О своем открытии химик сообщил в докладе, представил информацию, полученную о свойствах нового элемента, Немецкому химическому обществу.

Химический элемент германий был представлен Винклером в качестве неметалла, по аналогии с сурьмой и мышьяком. Химик хотел назвать его нептунием, но это название уже использовалось. Тогда его стали называть германий. Химический элемент, открытый Винклером, вызвал серьезную дискуссию между ведущими химиками того времени. Немецкий ученый Рихтер предположил, что это и есть тот самый экасилициум, о котором говорил Менделеев. Спустя некоторое время данное предположение было подтверждено, что доказало жизнеспособность периодического закона, созданного великим русским химиком.

Физические свойства

Как можно охарактеризовать германий? Химический элемент имеет 32 порядковый номер в Менделеева. Данный металл плавится при 937,4 °С. Температура кипения этого вещества составляет 2700 °С.

Германий - элемент, который впервые стали применять в Японии для медицинских целей. После многочисленных исследований германийорганических соединений, проводимых на животных, а также в ходе исследований на людях, удалось обнаружить положительное воздействие таких руд на живые организмы. В 1967 году доктору К. Асаи удалось обнаружить тот факт, что у органического германия существует огромный спектр биологического воздействия.

Биологическая активность

Какова характеристика химического элемента германия? Он способен переносить кислород по всем тканям живого организма. Попадая в кровь, он ведет себя по аналогии с гемоглобином. Германий гарантирует полноценное функционирование всех систем организма человека.

Именно этот металл является стимулятором размножения клеток иммунитета. Он, в виде органических соединений, позволяет формировать гамма-интерфероны, которые подавляют размножение микробов.

Германий препятствует образованию злокачественных опухолей, не дает развиваться метастазам. Органические соединения данного химического элемента способствуют выработке интерферона, защитной белковой молекулы, которая вырабатывается организмом в качестве защитной реакции на появление инородных тел.

Области применения

Противогрибковое, антибактериальное, противовирусное свойство германия стало основой сфер его применения. В Германии этот элемент в основном получили как побочный продукт переработки цветных руд. Разными способами, которые зависят от состава исходного сырья, выделяли германиевый концентрат. В его составе содержалось не больше 10 процентов металла.

Как именно в полупроводниковой современной технике применяется германий? Характеристика элемента, данная ранее, подтверждает возможность его использования для производства триодов, диодов, силовых выпрямителей, кристаллических детекторов. Также германий используется при создании дозиметрических приборов, устройств, которые необходимы для измерения напряженности постоянного и переменного магнитного поля.

Существенную область применения данного металла составляет изготовление детекторов инфракрасного излучения.

Перспективным является использование не только самого германия, но и некоторых его соединений.

Химические свойства

Германий при комнатной температуре довольно стоек к воздействию влаги, кислорода воздуха.

В ряду - германий - олово) наблюдается увеличение восстановительной способности.

Германий устойчив к воздействию растворов соляной и серной кислот, он не вступает во взаимодействие с растворами щелочей. При этом данный металл довольно быстро растворяется в царской водке (семи азотной и соляной кислот), а также в щелочном растворе пероксида водорода.

Как дать полную характеристику химическому элементу? Германий и его сплавы необходимо проанализировать не только по физическим, химическим свойствам, но и областям применения. Процесс окисления германия азотной кислотой протекает достаточно медленно.

Нахождение в природе

Попробуем дать характеристику химическому элементу. Германий в природе обнаружен только в виде соединений. Среди самых распространенных в природе германийсодержащих минералов выделим германит и аргиродит. Кроме того, германий присутствует в сульфидах и силикатах цинка, а в незначительном количестве он есть в различных типах каменного угля.

Вред для здоровья

Какое воздействие оказывает на организм германий? Химический элемент, электронная формула которого имеет вид 1е; 8 е; 18 е; 7 е, может негативно воздействовать на человеческий организм. Например, при загрузке германиевого концентрата, измельчении, а также загрузке диоксида данного металла, могут появляться профессиональные заболевания. В качестве иных источников, приносящих вред здоровью, можно рассматривать процесс переплавки порошка германии в бруски, получение угарного газа.

Адсорбированный германий можно достаточно быстро вывести из организма, в большей степени с мочой. В настоящее время нет детальной информации о том, насколько токсичны неорганические соединения германия.

Раздражающее действие на кожу оказывает тетрахлорид германия. В клинических испытаниях, а также при длительном пероральном приеме кумулятивных количеств, которые достигали 16 граммов спирогермания (органического противоопухолевого препарата), а также иных германиевых соединений, обнаружена нефротоксическая и нейротоксическая активность данного металла.

Подобные дозировки в основном не характерны для промышленных предприятий. Те эксперименты, что проводились на животных, были направлены на изучение действия германия и его соединений на живой организм. В результате удалось установить ухудшение здоровья при вдыхании существенного объема пыли металлического германия, а также его диоксида.

Ученые обнаружили в легких животных серьезные морфологические изменения, которые аналогичны пролиферативным процессам. Например, было выявлено существенное утолщение альвеолярных разделов, а также гиперплазия лимфатических сосудов вокруг бронхов, утолщения кровеносных сосудов.

Диоксид германия не оказывает раздражающего действия на кожу, но непосредственный контакт этого соединения с оболочкой глаза приводит к образованию германиевой кислоты, являющейся серьезным глазным раздражителем. При продолжительных внутрибрюшинных инъекциях были обнаружены серьезные изменения в периферической крови.

Важные факты

Самыми вредными соединениями германия являются хлорид и гидрид германия. Последнее вещество провоцирует серьезное отравление. В результате морфологического обследования органов животных, которые погибли при острой фазе, показали существенные нарушения в системе кровообращения, а также клеточные модификации в паренхиматозных органах. Ученые пришли к выводу, что гидрид представляет собой многоцелевой яд, который поражает нервную систему, угнетает систему периферийного кровообращения.

Тетрахлорид германия

Он является сильным раздражителем дыхательной системы, глаз, кожи. В концентрации 13 мг/м 3 он способен подавлять на клеточном уровне легочный ответ. При увеличении концентрации данного вещества наблюдается серьезное раздражение верхних дыхательных путей, существенные изменения ритма и частоты дыхания.

Отравление данным веществом приводит к катарально-десквамативным бронхитам, интерстициальной пневмонии.

Получение

Так как в природе германий представлен в качестве примеси к никелевым, полиметаллическим, вольфрамовым рудам, для выделения чистого металла в промышленности проводят несколько трудоемких процессов, связанных с обогащением руды. Из нее выделяют сначала оксид германия, затем проводят его восстановление водородом при повышенной температуре до получения простого металла:

GeO2 + 2H2 = Ge + 2H2O.

Электронные свойства и изотопы

Германий считают непрямозонным типичным полупроводником. Величина его диэлектрической статистической проницаемости составляет 16, а величина сродства к электрону - 4эВ.

В тонкой пленке легированным галлием можно придать германию состояние сверхпроводимости.

В природе присутствует пять изотопов этого металла. Из них стабильными являются четыре, а пятый подвергается двойному бета-распаду, период полураспада составляет 1,58×10 21 лет.

Заключение

В настоящее время органические соединения данного металла применяют в разных сферах промышленности. Прозрачность в инфракрасной спектральной области металлического германия сверхвысокой чистоты важна для изготовления оптических элементов инфракрасной оптики: призм, линз, оптических окон современных датчиков. Самой распространенной областью использования германия считают создание оптики тепловизионных камер, которые функционируют в диапазоне длин волн от 8 до 14 микрон.

Подобные устройства применяют в военной технике для систем инфракрасного наведения, ночного видения, пассивного тепловидения, противопожарных системах. Также германий имеет высокий показатель преломления, что необходимо для антибликового покрытия.

В радиотехнике транзисторы на основе германия имеют характеристики, которые по многим показателям превышают показатели кремниевых элементов. Обратные токи у германиевых элементов существенно выше, чем у их кремниевых аналогов, что позволяет существенно увеличивать эффективность подобных радиоприборов. Учитывая, что германий не так распространен в природе, как кремний, в радиоприборах в основном применяют кремниевые полупроводниковые элементы.

(Germanium; от лат. Germania - Германия), Ge - хим. элемент IV группы периодической системы элементов; ат. н. 32, ат. м. 72,59. Серебристо-серое вещество с металлическим блеском. В хим. соединениях проявляет степени окисления + 2 и +4. Соединения со степенью окисления +4 более стойки. Природный германий состоит из четырех стабильных изотопов с массовыми числами 70 (20,55%), 72 (27,37%), 73(7, 67%) и 74 (36,74%) и одного радиоактивного изотопа с массовым числом 76 (7,67%) и периодом полураспада 2 106 лет. Искусственно (с помощью различных ядерных реакций) получено много радиоактивных изотопов; наибольшее значение имеет изотоп 71 Ge с периодом полураспада 11,4 дня.

Существование и св-ва германия (под названием «экасилиций») предсказал в 1871 рус ученый Д. И. Менделеев. Однако лишь в 1886 нем. химик К. Винклер обнаружил в минерале аргиродите неизвестный элемент, св-ва к-рого совпадали со св-вами «экасилиция». Начало пром. произ-ва германий относится к 40-м гг. 20 в., когда он получил применение в качестве полупроводникового материала. Содержание германия в земной коре (1-2) 10~4 %. Германий относится к рассеянным элементам и редко встречается в виде собственных минералов. Известно семь минералов, в к-рых его концентрация больше 1 %, среди них: Cu2 (Си, Ge, Ga, Fe, Zn)2 (S, As)4X X (6,2-10,2% Ge), рениерит (Cu, Fe)2 (Cu, Fe, Ge, Ga, Zn)2 X X (S, As)4 (5,46-7,80% Ge) и аргиродит Ag8GeS6 (3/55-6,93% Ge). Г. накапливается также в каустобиолитах (гумусовых углях, горючих сланцах, нефти). Стойкая при обычных условиях кристаллическая модификация Г. имеет кубическую структуру типа алмаза, с периодом а = 5,65753 A (Gel).

Германий это

Плотность германия (т-ра 25° С) 5,3234 г/см3, tпл 937,2° С; tкип 2852° С; теплота плавления 104,7 кал/г, теплота сублимации 1251 кал/г, теплоемкость (т-ра 25° С) 0,077 кал/г град; коэфф. теплопроводности, (т-ра 0° С) 0,145 кал/см сек град, температурный коэфф. линейного расширения (т-ра 0-260° С),5,8 х 10-6 град-1. При плавлении германий уменьшается в объеме (примерно на 5,6%), плотность его увеличивается на 4% ч При высоком давлении алмазо-подобная модификация. Германий претерпевает полиморфные превращения, образуя кристаллические модификации: тетрагональную структуру типа B-Sn (GeII), объемноцентрированную тетрагональную структуру с периодами а = 5,93 А, с = 6,98 A (GeIII) и объемноцентрированную кубическую структуру с периодом а = 6,92 A(GeIV). Эти модификации по сравнению с GeI отличаются большими плотностью и электропроводностью.

Аморфный германий может быть получен в виде пленок (толщиной примерно 10-3 см) при конденсации пара. Плотность его меньше плотности кристаллического Г. Структура энергетических зон в кристалле Г. обусловливает его полупроводниковые св-ва. Ширина запрещенной зоны Г. равна 0,785 эв (т-ра 0 К), удельное электрическое сопротивление (т-ра 20° С) 60 ом · см и с повышением т-ры значительно понижается по экспоненциальному закону. Примеси придают Г. т. н. примесную проводимость электронного (примеси мышьяка, сурьмы, фосфора) или дырочного (примеси галлия, алюминия, индия) типа. Подвижность носителей зарядов в Г. (т-ра 25° С) для электронов - около 3600 см2/в сек, для дырок - 1700 см2/в · сек, собственная концентрация носителей зарядов (т-ра 20° С) 2,5 . 10 13 см-3. Г. диамагнитен. При плавлении переходит в металлическое состояние. Германий очень хрупок, твердость его по Моосу 6,0, микротвердость 385 кгс/мм2, предел прочности на сжатие (т-ра 20° С) 690 кгс/см2. С повышением т-ры твердость снижается, выше т-ры 650° С он становится пластичным, поддается мех. обработке. Германий практически инертен к воздуху, кислороду и к неокисляющим электролитам (если нет растворенного кислорода) при т-ре до 100° С. Стойкий к действию соляной и разбавленной серной к-т; медленно растворяется в концентрированных серной и азотной к-тах при нагревании (образующаяся при этом пленка двуокиси замедляет растворение), хорошо растворяется в «царской водке», в растворах ги-похлоритов или гидроокисей щелочных металлов (при наличии перекиси водорода), в расплавах щелочей, перекисей, нитратов и карбонатов щелочных металлов.

Выше т-ры 600° С окисляется на воздухе и в токе кислорода, образуя с кислородом окись GeO и двуокись (Ge02). Окись германия- темно-серый порошок, возгоняющийся при т-ре 710° С, незначительно растворяется в воде с образованием слабой германитной к-ты (H2Ge02), соли к-рой (германиты) малостойки. В к-тах GeO легко растворяется с образованием солей двухвалентного Г. Двуокись германия- порошок белого цвета, существует в нескольких полиморфных модификациях, сильно различающихся по хим. св-вам: гексагональная модификация двуокиси сравнительно хорошо растворяется в воде (4,53 zU при т-ре 25° С), растворах щелочей и к-т, тетрагональная модификация практически нерастворима в воде и инертна к к-там. Растворяясь в щелочах, двуокись и ее гидрат образуют соли метагерманатной (H2Ge03) и ортогерманатной (H4Ge04) к-т - германаты. Германаты щелочных металлов растворяются в воде, остальные германаты практически нерастворимы; свежеосажденные растворяются в минеральных к-тах. Г. легко соединяется с галогенами, образуя при нагревании (около т-ры 250° С) соответствующие тетрагало-гениды - несолеобразные соединения, легко гидролизующиеся водой. Известны Г.- темно-коричневый (GeS) и белый (GeS2).

Для германия характерны соединения с азотом - коричневый нитрид (Ge3N4) и черный нитрид (Ge3N2), отличающийся меньшей хим. стойкостью. С фосфором Г. образует малостойкий фосфид (GeP) черного цвета. С углеродом не взаимодействует и не сплавляется, с кремнием образует непрерывный ряд твердых растворов. Для германий, как аналога углерода и кремния, характерна способность образовывать германоводороды типа GenH2n + 2 (германы), а также твердые соединения типов GeH и GeH2 (гермены).Германий образует металлические соединения () и со мн. металлами. Извлечение Г. из сырья заключается в получении богатого германиевого концентрата, а из него - высокой чистоты. В пром. масштабе германий получают из тетрахлорида, используя при очистке его высокую летучесть (для выделения из концентрата), малую в концентрированной соляной к-те и высокую в органических растворителях (для очистки от примесей). Часто для обогащения используют высокую летучесть низших сульфида и окисла Г., к-рые легко сублимируются.

Для получения полупроводникового германий применяют направленную кристаллизацию и зонную перекристаллизацию. Монокристаллический германий получают вытягиванием из расплава. В процессе выращивания Г. легируют спец. добавками, регулируя те или иные св-ва монокристалла. Г. поставляют в виде слитков длиной 380- 660 мм и поперечным сечением до 6,5 см2. Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов. Из него изготовляют линзы для приборов инфракрасной оптики, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, датчики, использующие эффект Холла, преобразователи энергии радиоактивного распада в электрическую. Германий используют в микроволновых аттенюаторах, термометрах сопротивления, эксплуатируемых при т-ре жидкого гелия. Пленка Г., нанесенная на рефлектор, отличается высокой отражательной способностью, хорошей коррозионной стойкостью. германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. гемания с золотом образуют низкоплавкую эвтектику и расширяются при охлаждении. Двуокись Г. применяют для изготовления спец. стекол, характеризующихся высоким коэфф. преломления и прозрачностью в инфракрасной части спектра, стеклянных электродов и термисторов, а также эмалей и декоративных глазурей. Германаты используют в качестве активаторов фосфоров и люминофоров.

— химический элемент периодической системы химических элементов Д.И. Менделеева. И обозначается символом Ge , германий это простое вещество серо-белого цвета и имеет твердые характеристики как для метала.

Cодержание в земной коре 7.10-4% по массе. относится к рассеянным элементам, из за сваей реакционной способности к окислению в свободном состоянии как чистый метал не встречается.

Нахождение германия в природе

Германий — один из трёх химических элементов, предсказанных Д.И. Менделеевым на основании их положения в периодической системы (1871 г).

Он относится к редким рассеянным элементам.

В настоящее время основными источниками промышленного получения германия являются отходы цинкового производства, коксования углей, зола некоторых некоторых видов углей, в примесях силикатов, осадочных породах железа, в никелевых и вольфрамовый рудах, торфе, нефти, геотермальных водах и в некоторых водорослях.

Основные минералы содержащие германий

Плюмбогерматит (PbGeGa) 2 SO 4 (OH) 2 +H 2 O содержание до 8.18 %

яргиродит AgGeS6 содержит от 3.65 до 6.93 % германия .

рениерит Cu 3 (FeGeZn)(SAs) 4 содержит от 5.5 до 7.8% германия.

В некоторых странах получение германия является побочным продуктом переработки некоторых руд таких как цинк-свинец-медь. Также германий получают в производстве кокса, а также в золе бурого угля с содержанием от 0.0005 до 0.3% и в золе каменных углей с содержанием от 0.001 до 1 -2 % .

Германий как металл очень устойчив к действию кислорода воздуха, кислорода, воды некоторых кислот, разбавленной серной и соляной кислоты. Но сконцентрированной серной кислотой реагирует очень медленно.

Германий реагирует с азотной кислотой HNO 3 и царской водкой, медленно реагирует едкими щелочами с образованием соли германата, но при добавлении перекиси водорода H 2 O 2 реакция протекает очень быстро.

При воздействии высоких температур свыше 700 °С германий легко окисляется на воздухе с образованием GeO 2 , легко вступает в реакцию с галогенами, получая при этом тетрагалогениты.

С водородом, кремнием, азотом и углеродом не вступает в реакцию.

Известны летучие соединения германия с характеристиками:

Германия гексагидрид -дигерман, Ge 2 H 6 — горючий газ, при длительном хранении на свету разлагается, окрашиваясь в желтый затем в коричневый цвет превращаясь в твёрдое вещество тёмно — коричневого цвета, разлагается водой и щелочами.

Германия тетрагидрид, моногерман — GeH 4 .

Применение германия

Германий, как и некоторые другие , имеет свойства так называемых полупроводников. Все по их электропроводности делятся на три группы: проводники, полупроводники и изоляторы (диэлектрики) . Удельная электропроводность металлов находиться в интервале 10В4 — 10В6 Ом.смВ-1 , приведённое деление условно. Однако можно указать принципиальное различие в электрофизических свойствах проводников и полупроводников. У первых электропроводность с повышением температуры падает, у полупроводников — возрастает. При температуре, близкой к абсолютному нулю, полупроводники превращаются в изоляторы. Как известно, металлические проводники проявляют в таких условиях свойства сверхпроводимости.

Полупроводниками могут быть различные вещества. К ним относятся : бор, (

И даже раньше кремния германий стал важнейшим полупроводниковым материалом.

Здесь уместен вопрос: а что же такое полупроводники и полупроводимосгь? Однозначно ответить на него иногда затрудняются даже специалисты. «Точное определение полупроводимости затруднительно и зависит от того, какое свойство полупроводников рассматривается», - этот уклончивый ответ заимствован из вполне респектабельного научного труда по полупроводникам. Есть, правда, и очень четкое определение: «Полупроводник - один проводник на два вагона», - но это уже из области фольклора...

Главное в элементе № 32 то, что он полупроводник. К объяснению этого его свойства мы еще вернемся. Пока же о германии как о физикохимической «личности».

Германий как он есть

Вероятно, подавляющему большинству читателей видеть германий не приходилось. Элемент этот достаточно редкий, дорогой, предметов ширпотреба из него не делают, а германиевая «начинка» полупроводниковых приборов имеет настолько малые размеры, что разглядеть, какой он, германий , трудно, даже если разломать корпус прибора. Поэтому расскажем об основных свойствах германия, его внешнем виде, особенностях. А вы попробуйте мысленно проделать те несложные операции, которые не раз приходилось делать автору.

Извлекаем из упаковки стандартный слиток германия. Это небольшое тело почти правильной цилиндрической формы, диаметром от 10 до 35 и длиной в несколько десятков миллиметров. Некоторые справочники утверждают, что элемент № 32 серебристого цвета, но это не всегда верно: цвет германия зависит от обработки его поверхности . Иногда он кажется почти черным, иногда похож на сталь, но иногда бывает и серебристым.

Рассматривая германиевый слиток, не забывайте, что он стоит примерно столько же, сколько золотой, и хотя бы поэтому ронять его на пол не следует. Но есть и другая причина, намного более важная: германий почти так же хрупок, как стекло, и может соответственно себя вести. Мне приходилось видеть, как после такой неудачи небрежный экспериментатор долго ползал по полу, пытаясь собрать все осколки до единого... По внешнему виду германий нетрудно спутать с кремнием. Эти элементы не только конкуренты, претендующие на звание главного полупроводникового материала, но и аналоги. Впрочем, несмотря на сходство многих технических свойств и внешнего облика, отличить германиевый слиток от кремниевого довольно просто: германий в два с лишним раза тяжелее кремния (плотность 5,33 и 2,33 г/см 3 соответственно).

Последнее утверждение нуждается в уточнении, хотя, казалось бы, цифры исключают комментарий. Дело в том, что цифра 5,33 относится к германию-1 - самой распространенной и самой важной из пяти аллотропических модификаций элемента № 32. Одна из них аморфная, четыре кристаллические. Из кристаллических германий-1 самый легкий. Его кристаллы построены так же, как кристаллы алмаза , но если для углерода такая структура определяет и максимальную плотность, то у германия есть и более плотные «упаковки». Высокое давление при умеренном нагреве (30 тыс. атм и 100°C) преобразует Ge-I в Ge-II с кристаллической решеткой, как у белого олова .

Подобным же образом можно получить еще более плотные, чем Ge-II, Ge-III и Ge-IV

Все «необычные» модификации кристаллического германия превосходят Ge-I и электропроводностью. Упоминание именно об этом свойстве не случайно: величина удельной электропроводности (или обратная величина - удельное сопротивление) для элемента-полупроводника особенно важна.

Но что такое полупроводник?

Формально, полупроводник - это вещество с удельным сопротивлением от тысячных долей до миллионов омов на 1 см. Рамки «от» и «до» очень широкие, но место германия в этом диапазоне совершенно определенное. Сопротивление сантиметрового кубика из чистого германия при 18°С равно 72 ом. При 19°С сопротивление того же кубика уменьшается до 68 ом. Это вообще характерно для полупроводников - значительное изменение электрического сопротивления при незначительном изменении температуры. С ростом температуры сопротивление обычно падает. Оно существенно изменяется и под влиянием облучения, и при механических деформациях.

Замечательна чувствительность германия (как, впрочем, и других полупроводников) не только к внешним воздействиям. На свойства германия сильно влияют даже ничтожные количества примесей. Не менее важна химическая природа примесей.

Добавка элемента V группы позволяет получить полупроводник с электронным типом проводимости. Так готовят ГЭС (германий электронный, легированный сурьмой). Добавив же элемент III группы, мы создадим в нем дырочный тип проводимости (чаще всего это ГДГ - германий дырочный, легированный галлием).

Напомним, что «дырки» - это места, освобожденные электронами, перешедшими на другой энергетический уровень. «Квартиру», освобожденную переселенцем, может тут же занять его сосед, но у того тоже была своя квартира. Переселения совершаются одно за другим, и дырка сдвигается.

Сочетание областей с электронной и дырочной проводимостью легло в основу самых важных полупроводниковых приборов - диодов и транзисторов. Например, вплавляя в пластинку ГЭС индий и создавая таким образом область с дырочной проводимостью, получаем выпрямляющее устройство - диод. Он пропускает электрический ток преимущественно в одном направлении - из области с дырочной проводимостью к электронной. Вплавив индий с обеих сторон пластинки ГЭС, превращаем эту пластинку в основу транзистора.

Первый в мире германиевый транзистор создан в 1948 г., а уже через 20 лет выпускались сотни миллионов таких приборов. Германиевые диоды и триоды нашли широкое применение в радиоприемниках и телевизорах, счетно-решающих устройствах и в разнообразной измерительной аппаратуре.

Germanium применяют и в других первостепенно важных областях современной техники: для измерения низких температур, для обнаружения инфракрасного излучения и т. д. Для всех этих областей нужен германий очень высокой чистоты - физической и химической. Химическая чистота такая, чтобы количество вредных примесей не превышало одной десятимиллионной процента (107%). Физическая чистота - это минимум дислокаций, нарушений в кристаллической структуре. Для достижения ее выращивают монокристаллический германий: весь слиток - один кристалл.

Ради этой немыслимой чистоты

В земной коре германия не очень мало - 7*10 -4 % ее массы. Это больше, чем свинца, серебра , вольфрама. Германий обнаружен на Солнце и в метеоритах. Германий есть на территории всех стран. Но промышленными месторождениями минералов германия, по-видимому, не располагает ни одна промышленно развитая страна. Германий очень рассеян. Минералы, в которых этого элемента больше 1%, - аргиродит , германит , ультрабазит и другие, включая открытые лишь в последние десятилетия реньерит, штотит, конфильдит и плюмбогерманит - большая редкость. Они не в состоянии покрыть мировую потребность в этом важном элементе.

А основная масса земного германия рассеяна в минералах других элементов, в углях, в природных водах, в почве и живых организмах. В каменном угле, например, содержание германия может достигать десятой доли процента. Может, но достигает далеко не всегда. В антраците, например, его почти нет... Словом, германий - всюду и нигде.

Поэтому способы концентрирования германия очень сложны и разнообразны. Они зависят прежде всего от вида сырья и содержания в нем этого элемента.

Руководителем комплексного изучения и решения германиевой проблемы в СССР был академик Николай Петрович Сажин. О том, как зарождалась советская промышленность полупроводников, рассказано в его статье, опубликованной в журнале «Химия и жизнь» за полтора года до кончины этого выдающегося ученого и организатора науки.

Чистая двуокись германия впервые в нашей стране была получена в начале 1941 г. Из нее сделали германиевое стекло с очень высоким коэффициентом преломления света. Исследования элемента № 32 и способов его возможного получения возобновились после войны, в 1947 г. Теперь германий интересовал ученых именно как полупроводник.

Новые методы анализа помогли выявить новый источник германиевого сырья - надсмольные воды коксохимических заводов. Германия в них не больше 0,0003%, но с помощью дубового экстракта из них оказалось несложно осадить германий в виде таннидного комплекса. Главная составляющая таннина - сложный эфир глюкозы. Он способен связывать germanium, даже если концентрация этого элемента в растворе исчезающе мала.

Из полученного осадка, разрушив органику, нетрудно получить концентрат, содержащий до 45% двуокиси германия.

Дальнейшие превращения уже мало зависят от вида сырья. Восстанавливают германий водородом (так поступал еще Винклер), но прежде нужно отделить окись германия от многочисленных примесей. Для решения этой задачи оказалось очень полезным удачное сочетание свойств одного из соединений германия.

Четыреххлористый германий GeCl 4 - летучая жидкость с низкой температурой кипения (83,1°С). Следовательно, ее удобно очищать дистилляцией и ректификацией (процесс идет в кварцевых колоннах с насадкой). Четыреххлористый германий почти нерастворим в концентрированной соляной кислоте. Следовательно, для очистки GeCl 4 можно применить растворение примесей соляной кислотой.

Очищенный GeCl4 обрабатывают водой, из которой с помощью ионообменных смол предварительно изъяты практически все загрязнения. Признаком нужной чистоты служит увеличение удельного сопротивления воды до 15-20 млн. Ом-см.

Под действием воды происходит гидролиз четыреххлористого германия: GeCl 4 + 2H 2 O → GeO 2 + 4HCl. Заметим, что это «записанное наоборот» уравнение реакции, в которой получают четыреххлористый германий. Затем следует восстановление GeO 2 очищенным водородом: GeO 2 + 2H 2 → Ge +2H 2 O. Получается порошкообразный германий, который сплавляют, а затем дополнительно очищают методом зонной плавки. Между прочим, этот метод очистки материалов был разработан в 1952 г. именно для очистки полупроводникового германия.

Примеси, необходимые для придания германию того или иного типа проводимости (электронной или дырочной), вводят на последних стадиях производства, т. е. при зонной плавке и в процессе выращивания монокристалла.

С тех пор как в 1942 г. было установлено, что в радиолокационных системах часть электронных ламп выгодно заменять полупроводниковыми детекторами, интерес к германию рос из года в год. Изучение этого ранее нигде не применявшегося элемента способствовало развитию науки в целом и прежде всего физики твердого тела. А значение полупроводниковых приборов - диодов, транзисторов, термисторов, тензорезисторов, фотодиодов и других - для развития радиоэлектроники и техники в целом настолько велико и настолько известно, что говорить о нем. в возвышенных тонах еще раз как-то неудобно. До 1965 г. большая часть полупроводниковых приборов делалась на германиевой основе. Но в последующие годы стал развиваться процесс постепенного вытеснения «экасилиция» самим силициумом.

Германий под натиском кремния

Кремниевые полупроводниковые приборы выгодно отличаются от германиевых прежде всего лучшей работоспособностью при повышенных температурах и меньшими обратными токами. Большим преимуществом кремния оказалась и устойчивость его двуокиси к внешним воздействиям. Именно она позволила создать более прогрессивную - планарную технологию производства полупроводниковых приборов, состоящую в том, что кремниевую пластинку нагревают в кислороде или смеси кислорода с водяным паром и она покрывается защитным слоем SiO 2 .

Вытравив затем в нужных местах «окошки», через них вводят легирующие примеси, здесь же присоединяют контакты, а прибор в целом тем временем защищен от внешних воздействии. Для германия такая технология пока невозможна: устойчивость его двуокиси недостаточна. Под натиском кремния, арсенида галлия и других полупроводников германий утратил положение главного полупроводникового материала. В 1968 г. в США производилось уже намного больше кремниевых транзисторов, чем германиевых. Сейчас мировое производство германия, по оценкам зарубежных специалистов, составляет 90-100 т в год. Его позиции в технике достаточно прочны.

  • Во-первых, полупроводниковый германий заметно дешевле полупроводникового кремния.
  • Во-вторых, некоторые полупроводниковые приборы проще и выгоднее делать по-прежнему из германия, а не из кремния.
  • В-третьих, физические свойства германия делают его практически незаменимым при изготовлении приборов некоторых типов, в частности туннельных диодов.

Все это дает основание полагать, что значение германия всегда будет велико.

ЕЩЕ ОДИН ТОЧНЫЙ ПРОГНОЗ. О прозорливости Д. И. Менделеева, описавшего свойства трех еще не открытых элементов, написано много. Не желая повторяться, хотим лишь обратить внимание на точность менделеевского прогноза. Сопоставьте сведенные в таблицу данные Менделеева и Винклера.

Экасилиций Атомный вес 72 Удельный вес 5,5 Атомный объем 13 Высший окисел EsO 2 Удельный вес его 4,7

Хлористое соединение EsCl 4 - жидкость с температурой кипения около 90°С

Соединение с водородом EsH 4 газообразно

Металлоорганическое соединение Es(C2H 5) 4 с температурой кипения 160°С

Германий Атомный вес 72,6 Удельный вес 5,469 Атомный объем 13,57 Высший окисел GeO 2 Удельный вес его 4,703

Хлористое соединение GeCl 4 - жидкость с температурой кипения 83°С

Соединение с водородом GeH 4 газообразно

Металлоорганическое соединение Ge(C2H 5) 4 с температурой кипения 163,5°С

ПИСЬМО КЛЕМЕНСА ВИНКЛЕРА

«Милостивый государь!

Разрешите мне при сем передать Вам оттиск сообщения, из которого следует, что мной обнаружен новый элемент «германий». Сначала я был того мнения, что этот элемент заполняет пробел между сурьмой и висмутом в Вашей замечательно проникновенно построенной периодической системе и что этот элемент совпадает с Вашей экасурьмой, но все указывает на то, что здесь мы имеем дело с экасилицием.

Я надеюсь вскоре сообщить Вам более подробно об этом интересном веществе; сегодня я ограничиваюсь лишь тем, что уведомляю Вас о весьма вероятном триумфе Вашего гениального исследования и свидетельствую Вам свое почтение и глубокое уважение.

МЕНДЕЛЕЕВ ОТВЕТИЛ: «Так как открытие германия является венцом периодической системы, то Вам, как «отцу» германия, принадлежит этот венец; для меня же является ценной моя роль предшественника и то дружеское отношение, которое я встретил у Вас».

ГЕРМАНИЙ И ОРГАНИКА. Первое элементоорганическое соединение элемента № 32, тетраэтилгерманий, получено Винклером из четыреххлористого германия. Интересно, что ни одно из полученных до сих пор элементоорганических соединений германия не ядовито, в то время как большинство свинец - и оловоорганических соединений (эти элементы - аналоги германия) токсичны.

КАК ВЫРАЩИВАЮТ ГЕРМАНИЕВЫЙ МОНОКРИСТАЛЛ. На поверхность расплавленного германия помещают германиевый же кристалл - «затравку», которую постепенно поднимают автоматическим устройством; температура расплава чуть выше температуры плавления германия (937°С). Затравку вращают, чтобы монокристалл «обрастал мясом» равномерно со всех сторон. Важно, что в процессе такого роста происходит то же самое, что при зонной плавке: в «нарост» (твердую фазу) переходит почти исключительно германий, а большая часть примесей остается в расплаве.

ГЕРМАНИЙ И СВЕРХПРОВОДИМОСТЬ. Классический полупроводник германий оказался причастен к решению другой важной проблемы - созданию сверхпроводящих материалов, работающих при температуре жидкого водорода , а не жидкого гелия . Водород, как известно, переходит из газообразного в жидкое состояние при температуре - 252,6°С, или 20,5° К. В начале 70-х годов была получена пленка из сплава германия с ниобием толщиной всего в несколько тысяч атомов. Эта пленка сохраняет сверхпроводимость при температуре 24,3° К и ниже.