Уравнения состояния. Другие уравнения состояния Что называется уравнением состояния системы




Параметры состояния связаны друг с другом. Соотношение, которое определяет эту связь, называется уравнением состояния этого тела. В простейшем случае равновесное состояние тела определяется значением тех параметров: давления p, объема V и температуры, массу тела (системы) обычно считают известной. Аналитически связь между этими параметрами выражают как функцию F:

Уравнение (1) называют при этом уравнением состояния. Это закон, который описывает характер изменения свойств вещества при изменении внешних условий.

Что такое идеальный газ

Особенно простым, но весьма информативным является уравнение состояния так называемого идеального газа.

Определение

Идеальным называют газ, в котором взаимодействием молекул между собой можно пренебречь.

К идеальным можно отнести разреженные газы. Особенно близки по своему поведению к идеальному газу гелий и водород. Идеальный газ представляет собой упрощенную математическую модель реального газа: молекулы считаются движущимися хаотически, а соударения между молекулами и удары молекул о стенки сосуда --- упругими, такими, которые не приводя к потерям энергии в системе. Такая упрощенная модель очень удобна, так как не требует учитывать силы взаимодействия между молекулами газа. Большинство реальных газов не отличаются в своем поведении от идеального газа при условиях, когда суммарный объем молекул пренебрежимо мал по сравнению с объемом сосуда (т.е. при атмосферном давлении и комнатной температуре), что позволяет использовать уравнение состояния идеального газа в сложных расчетах.

Уравнение состояния идеального газа можно записать в нескольких видах (2), (3), (5):

Уравнение (2) -- уравнение Менделеева -- Клайперона, где m - масса газа, $\mu $ -- молярная масса газа, $R=8,31\ \frac{Дж}{моль\cdot К}$- универсальная газовая постоянная, $\nu \ $- количество молей вещества.

где N - число молекул газа в массе m, $k=1,38\cdot 10^{-23}\frac{Дж}{К}$, постоянная Больцмана, которая определяет «долю» газовой постоянной приходящуюся на одну молекулу и

$N_A=6,02\cdot 10^{23}моль^{-1}$ -- постоянная Авогадро.

Если разделить в (4) обе части на V, то получим следующую форму записи уравнения состояния идеального газа:

где $n=\frac{N}{V}$- число частиц в единице объема или концентрация частиц.

Что такое реальный газ

Обратимся теперь к более сложным системам - к неидеальным газам и жидкостям.

Определение

Реальным газом называют газ, между молекулами которого существуют заметные силы взаимодействия.

В неидеальных, плотных газах взаимодействие молекул велико и его нужно учитывать. Оказывается, что взаимодействие молекул столь сильно усложняет физическую картину, что точное уравнение состояния неидеального газа не удается записать в простой форме. В таком случае прибегают к приближенным формулам, найденным полуэмпирический. Наиболее удачной такой формулой является уравнение Ван-деp-Ваальса.

Взаимодействие молекул имеет сложный характер. На сравнительно больших расстояниях между молекулами действуют силы притяжения. По мере уменьшения расстояния силы притяжения сначала растут, но затем уменьшаются и переходят в силы отталкивания. Притяжение и отталкивание молекул можно рассматривать и учитывать раздельно. Уравнение Ван-дер-Ваальса описывающее состояние одного моля реального газа:

\[\left(p+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT\ \left(6\right),\]

где $\frac{a}{V^2_{\mu }}$- внутреннее давление, обусловленное силами притяжения между молекулами, b -- поправка на собственный объем молекул, которая учитывает действие сил отталкивания между молекулами, причем

где d - диаметр молекулы,

величина a вычисляется по формуле:

где $W_p\left(r\right)\ $- потенциальная энергия притяжения двух молекул.

С увеличением объема роль поправок в уравнении (6) становится менее существенной. И в пределе уравнение (6) переходит в уравнение (2). Это согласуется с тем фактом, что при уменьшении плотности реальные газы по своим свойствам приближаются к идеальным.

Достоинством уравнения Ван-деp-Ваальса является то обстоятельство, что оно при очень больших плотностях приближённо описывает и свойства жидкости, в частности плохую ее сжимаемость. Поэтому есть основание полагать, что уравнение Ван-деp-Ваальса позволит отразить и переход от жидкости к газу (или от газа к жидкости).

На рис.1 изображена изотерма Ван-дер-Ваальса для некоторого постоянного значения температуры T, построенная из соответствующего уравнения.

В области "извилины" (участок КМ) изотерма трижды пересекает изобару. На участке [$V_1$, $V_2$] давление pастет с увеличением объема.

Такая зависимость невозможна. Это может означать, что в данной области с веществом пpоисходит что-то необычное. Что именно это, невозможно увидеть из уравнения Ван-деp-Ваальса. Необходимо обратиться к опыту. Опыт показывает, что в области "извилины" на изотерме в состоянии равновесия вещество расслаивается на две фазы: на жидкую и газообразную. Обе фазы сосуществуют одновременно и находятся в фазовом равновесии. В фазовом равновесии протекают процессы испарения жидкости и конденсации газа. Они идут с такой интенсивностью, что полностью компенсируют друг друга: количество жидкости и газа с течением времени остается неизменным. Газ, находящийся в фазовом равновесии со своей жидкостью, называется насыщенным паром. Если фазового равновесия нет, нет компенсации испарения и конденсации, то газ называется ненасыщенным паром. Как же ведет себя изотерма в области двухфазного состояния вещества (в области "извилины" изотермы Ван-деp-Ваальса)? Опыт показывает, что в этой области при изменении объема давление остается постоянным. График изотермы идет параллельно оси V(рис 2).

По мере увеличения температуры участок двухфазных состояний на изотермах сужается, пока не превратится в точку (рис. 2). Это особая точка К, в которой исчезает различие между жидкостью и паром. Она называется критической точкой. Параметры, соответствующие критическому состоянию, называются критическими (критическая температура, критическое давление, критическая плотность вещества).

Параметры, совокупностью которых определяется состояние системы, связаны друг с другом. При изменении одного из них изменяется по крайней мере хотя бы еще один. Эта взаимосвязь параметров находит выражение в функциональной зависимости термодинамических параметров .

Уравнение, связывающее термодинамические параметры системы в равновесном состоянии (например, для однородного тела – давление, объем, температура) называется уравнением состояния . Общее число уравнений состояния системы равно числу ее степеней свободы (вариантности равновесной системы), т.е. числу независимых параметров, характеризующих состояние системы .

При изучении свойств равновесных систем термодинамика прежде всего рассматривает свойства простых систем. Простой системой называют систему с постоянным числом частиц, состояние которой определяется только одним внешним параметром «а» и температурой, т.е. простая система-это однофазная система, определяемая двумя параметрами.

Так, уравнение

является уравнением состояния чистого вещества при отсутствии внешних электрических, магнитных, гравитационных полей. Графически уравнение состояния выразится поверхностью в координатах P -V -T , которую называют термодинамической поверхностью . Каждое состояние системы на такой поверхности изобразится точкой, которую называют фигуративной точкой . При изменении состояния системы фигуративная точка перемещается по термодинамической поверхности, описывая некоторую кривую . Термодинамическая поверхность представляет геометрическое место точек, изображающих равновесное состояние системы в функциях от термодинамических параметров .

Вывести уравнение состояния на основе законов термодинамики нельзя; они или устанавливаются из опыта, или находятся методами статистической физики.

Уравнения состояния связывают температуру Т , внешний параметр а i (например, объем) и какой-либо равновесный внутренний параметр b k (например, давление).

Если внутренним параметром b k является внутренняя энергия U , то уравнение

называется уравнением энергии или калорическим уравнением состояния .

Если внутренним параметром b k является сопряженная внешнему параметру а i сила А i (например, давление Р является силой объема V ), то уравнение

называется термическим уравнением состояния.

Термические и калорические уравнения состояния простой системы имеют вид:

Если А = Р (давление) и, следовательно, а = V (объем системы), то уравнения состояния системы запишутся соответственно:

Например, при изучении газообразного состояния используют понятие идеального газа. Идеальный газ представляет собой совокупность материальных точек (молекул или атомов), находящихся в хаотическом движении. Эти точки рассматриваются как абсолютно упругие тела, обладающие нулевым объемом и не взаимодействующие между собой.



Для такой простой системы как идеальный газ термическим уравнением состояния является уравнение Клапейрона-Менделеева

где Р – давление, Па; V – объем системы, м 3 ; n – количество вещества, моль; Т – термодинамическая температура, К; R – универсальная газовая постоянная:

Калорическим уравнением состояния идеального газа является закон Джоуля о независимости внутренней энергии идеального газа от объема при постоянной температуре:

где С V – теплоемкость при постоянном объеме. Для одноатомного идеального газа С V не зависит от температуры, поэтому

или, если Т 1 = 0 К, то .

Для реальных газов эмпирически установлено более 150 термических уравнений состояния. Наиболее простым из них и качественно правильно передающим поведение реальных газов даже при переходе их в жидкость является уравнение Ван-дер-Ваальса :

или для n молей газа:

Это уравнение отличается от уравнения Клапейрона-Менделеева двумя поправками: на собственный объем молекул b и на внутреннее давление а /V 2 , определяемое взаимным притяжением молекул газа (а и b – константы, не зависящие от Т и Р , но разные для различных газов; в газах с бóльшим а при постоянных Т и V давление меньше, а с бóльшим b – больше).

Более точными двухпараметрическими термическими уравнениями состояния являются:

первое и второе уравнения Дитеричи :

уравнение Бертло :

уравнение Редлиха-Квонга :

Приведенные уравнения Бертло, Дитеричи и особенно Редлиха-Квонга имеют более широкую область применимости, чем уравнение Ван-дер-Ваальса. Следует отметить, однако, что постоянные а и b для данного вещества не зависят от температуры и давления только в небольших интервалах этих параметров. Двухпараметрические уравнения типа Ван-дер-Ваальса описывают и газообразную, и жидкую фазы, и отражают фазовый переход жидкость-пар, а также наличие критической точки этого перехода , хотя точных количественных результатов для широкой области газообразного и жидкого состояний с помощью этих уравнений при постоянных параметрах а и b получить не удается.

Изотермы идеального и реального газов, а также газа Ван-дер-Ваальса представлены на рис. 1.1.


Рис. 1. Изотермы различных газов.

Точное описание поведения реального газа можно получить с помощью уравнения, предложенного в 1901 году Каммерлинг-Оннесом и Кизомом и получившего название уравнения состояния с вириальными коэффициентами или вириального уравнения состояния :

которое записывается как разложение фактора сжимаемости

по степеням обратного объема . Коэффициенты В 2 (Т ), В 3 (Т ) и т.д. зависят только от температуры , называются вторым, третьим и т.д. вириальным коэффициентом и описывают отклонения свойств реального газа от идеального при заданной температуре . Вириальные коэффициенты В i (Т ) вычисляются из опытных данных по зависимости PV для заданной температуры.

Уравнением состояния называется уравнение, устанавливающее взаимосвязь между термическими параметрами, т.е. ¦(P,V,T) = 0. Вид данной функции зависит от природы рабочего тела. Различают идеальные и реальные газы.

Идеальным называется газ, для которого можно пренебречь собственным объемом молекул и силами взаимодействия между ними. Простейшим уравнением состояния идеального газа является уравнение Менделеева – Клапейрона = R = const, где R – константа, зависящая от химической природы газа, и которая называется характеристической газовой постоянной. Из данного уравнения следует:

Pu = RT (1 кг)

PV = mRT (m кг)

Простейшим уравнением состояния реального газа является уравнение Ван- дер-Ваальса

(P + ) × (u - b) = RT

где - внутреннее давление

где a, b – постоянные, зависящие от природы вещества.

В предельном случае (для идеального газа)

u >> b Pu = RT

Для определения характеристической газовой постоянной R запишем уравнение Менделеева-Клапейрона (далее М.-К.) для P 0 = 760 мм.рт.ст., t 0 =0, 0 C

умножим обе части уравнения на величину m, которая равна массе киломоля газа mP 0 u 0 = mRT 0 mu 0 = V m = 22,4 [м 3 /кмоль]

mR = R m = P 0 V m / T 0 = 101,325*22,4/273,15 = 8314 Дж/кмоль×К

R m - не зависит от природы газа и поэтому называется универсальной газовой постоянной. Тогда характеристическая постоянная равна:

R= R m /m=8314/m; [Дж/кг×К].

Выясним смысл характеристической газовой постоянной. Для этого запишем уравнение М.-К. для двух состояний идеального газа, участвующего в изобарном процессе:

P(V 2 -V 1)=mR(T 2 -T 1)

R= = ; где L – работа изобарного процесса.

m(T 2 -T 1) m(T 2 -T 1)

Таким образом, характеристическая газовая постоянная представляет собой механическую работу (работу изменения объема), которую совершает 1 кг газа в изобарном процессе при изменении его температуры на 1 К.

Лекция №2

Калорические параметры состояния

Внутренняя энергия вещества представляет собой сумму кинетической энергии теплового движения атомов и молекул потенциальной энергии взаимодействия, энергии химических связей, внутриядерной энергии и т.д.

U = U КИН + U ПОТ + U ХИМ + U ЯД. +…

В т.д процессах изменяются только первые 2 величины, остальные не изменяются, так как не в этих процессах не изменяется химическая природа вещества и строение атома.

В расчетах определяется не абсолютное значение внутренней энергии, а ее изменение и поэтому в термодинамике принято, что внутренняя энергия состоит только из 1-го и 2-го слагаемых, т.к. в расчетах остальные сокращаются:



∆U = U 2 +U 1 = U КИН + U ПОТ … Для идеального газа U ПОТ = 0. В общем случае

U КИН = f(T); U ПОТ = f(p, V)

U = f(p, T); U ПОТ = f(p, V); U = f(V,T)

Для идеального газа можно записать следующее соотношение:

Т.е. внутренняя энергия зависит толлько от

теммпературы и не зависит от давления и объема

u = U/m; [Дж/кг]-удельная внутренняя энергия

Рассмотрим изменение внутренней энергии рабочего тела, совершающего круговой процесс или цикл

∆u 1m2 = u 2 - u 1 ; ∆U 1n2 = u 1 – u 2 ; ∆u ∑ = ∆u 1m2 – ∆u 2n1 = 0 du = 0

Из высшей математики известно, что если данный нтеграл равен нулю, то величина du представляет собой полный дифференциал функции

u = u(T, u) и равен

Все параметры, включая температуру, зависят друг от друга. Эта зависимость выражается уравнениями типа

F(X 1 ,X 2 ,...,x 1 ,x 2 ,...,T) = 0,

где Х 1 ,Х 2 ,... - обобщенные силы, х 1 ,х 2 ,... - обобщенные координаты, а Т - температура. Уравнения, устанавливающие зависимость между параметрами, называютсяуравнениями состояния .

Уравнения состояния приводятся для простых систем, преимущественно - для газов. Для жидкостей и твердых тел, принимаемых, как правило, несжимаемыми, уравнения состояния практически не предлагались.

К середине ХХ в. было известно значительное число уравнений состояния для газов. Однако развитие науки пошло таким путем, что почти все они не нашли применения. Единственное уравнение состояния, которое продолжает широко использоваться в термодинамике, - уравнение состояния идеального газа.

Идеальным газом называется газ, приближающийся по свойствам к газу низкомолекулярного вещества, находящегося при очень низком давлении и сравнительно высокой температуре (достаточно далекой от температуры конденсации).

Для идеального газа выполняются:

    закон Бойля - Мариотта (при постоянной температуре произведение давления газа на его объем остается постоянным для данного количества вещества)

    закон Гей-Люссака (при постоянном давлении отношение объема газа к температуре остается постоянным)

    закон Шарля (при постоянном объеме отношение давления газа к температуре остается постоянным)

.

С. Карно объединил перечисленные выше соотношения в единое уравнение типа

.

Б. Клапейрон придал этому уравнению форму, близкую к современной:

Объем V, входящий в уравнение состояния идеального газа, относится к одному молю вещества. Его называют также молярным объемом .

Общепринятое название постоянной R - универсальная газовая постоянная (очень редко можно встретить название «постоянная Клапейрона» ). Значение ее составляет

R=8,31431Дж/моль К.

Приближение реального газа к идеальному означает достижение настолько больших расстояний между молекулами, при которых можно полностью пренебречь их собственным объемом и возможностью взаимодействия, т.е. существования сил притяжения или отталкивания между ними.

Ван-дер-Ваальс предложил уравнение, учитывающее эти факторы, в следующей форме:


,

где a и b - постоянные, определяемые для каждого газа отдельно. Остальные величины, входящие в уравнение Ван-дер-Ваальса, имеют тот же смысл, что и в уравнении Клапейрона.

Возможность существования уравнения состояния означает, что для описания состояния системы можно указывать не все параметры, а их число, меньшее на единицу, так как один из них может быть определен (хотя бы гипотетически) из уравнения состояния. Например, для описания состояния идеального газа достаточно указать только одну из следующих пар: давление и температуру, давление и объем, объем и температуру.

Объем, давление и температуру иногда называют внешними параметрами системы.

Если допускается одновременное изменение объема, давления и температуры, то система имеет два независимых внешних параметра.

Система, находящаяся в термостате (устройстве, обеспечивающем постоянство температуры) или маностате (устройстве, обеспечивающем постоянство давления), имеет один независимый внешний параметр.

УРАВНЕНИЯ СОСТОЯНИЯ , ур-ния, выражающие связь между параметрами состояния физически однородной системы при термодинамич. равновесии . Термическое уравнение состояния связывает давление р с объемом V и т-рой T, а для многокомпонентных систем - также с составом (молярными долями компонентов). Калорическое уравнение состояния выражает внутр. энергию системы как ф-цию V, T и состава. Обычно под уравнением состояния, если специально не оговаривается, подразумевают термич. уравнение состояния. Из него можно непосредственно получить коэф. термич. расширения, коэф. изотермич. сжатия, термич. коэф. давления (упругости). Уравнение состояния является необходимым дополнением к термодинамич. законам. Пользуясь уравнениями состояния, можно раскрыть зависимость термодинамич. ф-ций от V и р, проинтегрировать дифференц. термодинамич. соотношения, рассчитать летучести (фугитивносги) компонентов системы , через к-рые обычно записывают условия фазового равновесия . Термодинамика устанавливает связь между уравнениями состояния и любым из термодинамических потенциалов системы, выраженным в виде ф-ции своих естественных переменных. Напр., если известна энергия Гельмгольца (свободная энергия) F как ф-ция T и V, то уравнение состояния не может быть получено с помощью одних только законов термодинамики , оно определяется из опыта или выводится методами статистич. физики. Последняя задача очень сложная и м. б. решена лишь для упрощенных моделей системы, напр, для идеального газа . Уравнения состояния, применяемые для реальных систем, имеют эмпирич. или полуэмпирич. характер. Ниже рассмотрены нек-рые наиб, известные и перспективные уравнения состояния.

У равнение состояния идеального газа имеет вид pV=RT, где V-молярный объем, R - универсальная газовая постоянная . Этому ур-нию подчиняются реальные газы при высоких разрежениях (см. Клапейрона - Менделеева уравнение).

Св-ва реальных газов при небольших и средних давлениях хорошо описываются вириальным уравнением : pV/RT = 1 + B 2 /V+B 3 /V 2 + ..., где B 2 , В 3 - второй, третий и т.д. вириальные коэффициенты. Для данного в-ва они зависят лишь от т-ры. Вириальное уравнение состояния обосновано теоретически; показано, что коэф. B 2 определяется взаимод. пар молекул , В 3 - взаимод. трех частиц и т.д. При больших плотностях в-ва записанное выше разложение по степеням обратного объема расходится, поэтому вириальное ур-ние непригодно для описания жидкостей . Оно служит лишь для расчета летучестей компонентов газообразных B-B. Обычно ограничиваются членом B 2 /V (редко B 3 /V 2). В лит. приводят эксперим. значения вириальных коэф., разработаны и теоре-тич. методы их определения. Уравнение состояния со вторым вириальным коэф. B 2 широко используют для моделирования газовой фазы при расчетах фазовых равновесий в случае не слишком высоких давлений (до 10 атм). Его применяют также для описания св-в разбавленных р-ров высокомол. в-в (см. Растворы полимеров).

Для практич. расчетов фазовых равновесий в широком диапазоне т-р и давлений важное значение имеют уравнения состояния, способные описать одновременно св-ва жидкой и газовой фаз. В первые такое ур-ние было предложено И. Ван-дер-Ваальсом в 1873:

р = RT(V-b)-a/V 2 ,

где а и b - постоянные Ван-дер-Ваальса, характерные для данного в-ва (см. Ван-дер-Ваальса уравнение). Это уравнение состояния имеет третий порядок относительно объёма V, любая изотерма при параметрах состояния , меньших критич. значений (в докри-тич. области), имеет три действит. положит, корня при фиксир. давлении . Наиб, из корней ур-ния соответствует газовой фазе, наименьший - жидкой; средний корень ур-ния физ. смысла не имеет. В сверхкритич. области параметров состояния изотермы имеют лишь один действит. корень.

Кубич. зависимость давления от объема сохраняется во MH. эмпирич. модификациях ур-ния Ван-дер-Ваальса. Чаще других используют двухпараметрич. ур-ния Пенга - Робинсона (1976) и Редлиха - Квонга - Соаве (1949, 1972). Эмпирич. постоянные этих уравнений состояния можно определить по критич. параметрам в-ва (см. Критическое состояние). Чтобы расширить круг описываемых уравнений состояния систем, набор рассматриваемых CB-B, диапазон т-р и давлений , разработаны кубич. Уравнения состояния, содержащие три и более эмпирич. постоянных. Важное преимущество кубич. уравнений состояния- их простота, благодаря чему при расчетах с помощью ЭВМ не требуется слишком больших затрат машинного времени. Для мн. систем, образованных неполярными или слабо полярными в-вами, эти уравнения состояния обеспечивают требуемую для практич. целей точность.

Если известны подробные эксперим. данные о р-V-T-зависимостях, для их обобщения привлекают многопараметрич. эмпирические уравнения состояния. Одно из наиб, распространенных уравнений состояния такого типа - ур-ние Бенедикта-Веббa Pубина (ур-ние БВР), разработанное в 1940 на основе вириального уравнения состояния. В этом ур-нии давление р представлено в виде полинома плотности в-ва с коэффициентами, зависящими от т-ры. Членами ряда высоких порядков пренебрегают, а для компенсации включают в ур-ние экспоненциальный член. Это приводит к появлению S-образных изотерм и дает возможность описывать жидкую фазу и равновесия жидкость - газ .

Для неполярных и слабо полярных в-в ур-ние БВР дает очень точные результаты. Для индивидуального в-ва оно содержит восемь подгоночных параметров, для смеси дополнительно вводятся параметры смешанного ("бинарного") взаимодействия. Оценка большого числа подгоночных параметров - задача очень сложная, требующая многочисленных и разнообразных эксперим. данных. Параметры ур-ния БВР известны лишь для неск. десятков в-в, гл. обр. углеводородов и неорг. газов . Модификации ур-ния, направленные, в частности, на повышение точности описания св-в конкретных в-в, содержат еще большее число подгоночных параметров. Несмотря на это, добиться удовлетворит, результатов для полярных в-в не всегда удается. Усложненность формы затрудняет использование уравнений состояния этого типа при расчетах процессов дистилляции , когда необходимо выполнять многократную оценку летучестей компонентов, объема и энтальпии системы.

При описании смесей в-в эмпирич. постоянные уравнения состояния считаются зависящими от состава. Для кубич. уравнений состояния ван-дер-ва-альсового типа общеприняты квадратичные правила смешения , согласно к-рым постоянные а и b для смеси определяют из соотношений:

где x i , x j - молярные доли компонентов, величины a ij и b ij связывают с постоянными для индивидуальных в-в a ii , a jj и b ii , b jj согласно комбинационным правилам:

a ij = (a ii a jj) 1/2 (1-k ij); 6 ij = (b ii +b jj)/2,

где k ij - подгоночные параметры смешанного взаимод., определяемые по эксперим. данным. Однако квадратичные правила смешения не позволяют получить удовлетворит, результаты для т. наз. асимметричных систем, компоненты к-рых сильно отличаются по полярности и мол. размерам, напр, для смесей углеводородов с водой .

M. Гурон и Дж. Видал в 1979 сформулировали правила смешения нового типа, опирающиеся на модели локального состава, к-рые успешно передают асимметрию концснтрац. зависимостей избыточного потенциала Гиббса G E для жидких смесей и позволяют существенно улучшить описание фазовых равновесий . Суть подхода состоит в том, что приравнивают величины G E жидкого р-ра, получаемые из уравнений состояния и рассчитываемые согласно выбранной модели локального состава [ур-ния Вильсона, NRTL (Non-Random Two Liquids equation), UNIQAC (UNIversal QUAsi-Chemical equation), UNIFAC (UNIque Functional group Activity Coefficients model); CM. Растворы неэлектролитов ]. Это направление интенсивно развивается.

Многие двухпараметрич. уравнения состояния (Ван-дер-Ваальса, вириаль-ное с третьим вириальным коэф. и др.) можно представить в виде приведенного уравнения состояния:

f(p пр, Т пр, V пр)= 0,

где p пр = р/р крит, Т пр =Т/Т крит, V пр = V/V крит - приведенные параметры состояния . В-ва с одинаковыми значениями р пр и Т пр имеют одинаковый приведенный объем V np ; совпадают также факторы сжимаемости Z = pV/RT, коэф. летучести и нек-рые др. термодинамич. ф-ции (см. Соответственных состояний закон). Более общий подход, к-рый позволяет расширить круг рассматриваемых в-в, связан с введением в приведенное уравнение состояния дополнит, параметров. Наиб, простые среди них - фактор критич. сжимаемости Z кpит = р крит V кpит /RT кpит. и ацентрич. фактор w = -Ig p пр -1 (при Т пр = 0,7). Ацентрич. фактор является показателем несферичности поля межмол. сил данного в-ва (для благородных газов он близок к нулю).

К. Питцер предложил пользоваться для расчета фактора сжимаемости линейным разложением

Z(T кpит, р крит) = Z 0 (T кpит, р крит)+ w Z"(T кpит, р крит),

где Z 0 означает фактор сжимаемости "простой" жидкости , напр, аргона , a Z" характеризует отклонения от модели простой жидкости (см. Жидкость). Предложены корреляционные соотношения , определяющие зависимости Z°(T кpит, р крит)

и Z"(T кpит, р крит). Наиб, известны корреляции Ли и Кесслера, в к-рых зависимость Z 0 от T кpит и р крит передается с помощью ур-ния БВР для аргона . Зависимость Z" от T кpит и р крит установлена при выборе в качестве "эталонной" жидкости н-октана. Принимается, что Z"(T кpит, р крит) = /w *, где w * - фактор ацентричности н-октана, Z* - его фактор сжимаемости согласно ур-нию БВР. Разработана методика применения ур-ния Ли-Кесслера и для жидких смесей . Это уравнение состояния наиб, точно описывает термодинамич. св-ва и фазовые равновесия для неполярных в-в и смесей.

Наряду с вышеупомянутыми эмпирич. уравнениями состояния важное значение приобрели ур-ния, обладающие возможностями учета особенностей структуры молекул и межмол. взаимод. Они опираются на положения статистич. теории и результаты численных экспериментов для модельных систем. Согласно мол.-статистич. трактовке, ур-ние Ван-дер-Ваальса описывает флюид твердых притягивающихся сфер, рассматриваемый в приближении среднею поля. В новых ур-ниях уточняется прежде всего член ур-ния Ван-дер-Ваальса, обусловливаемый силами межчастичного отталкивания. Значительно точнее приближение Кариахана- Старлинга, опирающееся на результаты численного моделирования флюида твердых сфер в широком диапазоне плотностей. Оно используется во многих уравнениях состояния, однако большие возможности имеют уравнения состояния модельных систем твердых частиц, в к-рых учитывается асимметрия мол. формы. Напр., в ур-нии BACK (Boublik-Alder-Chen-Kre-glewski) для оценки вклада сил отталкивания служит уравнение состояния флюида твердых частиц, имеющих форму гантелей. Для учета вклада сил притяжения употребляют выражение, аппроксимирующее результаты, полученные методом мол. динамики для флюида с межчастичными потенциалами типа прямоугольной ямы (см. Молекулярная динамика). Ур-ние BACK и его аналоги позволяют с достаточной точностью описывать смеси, не содержащие высококипящих компонентов.

Особенность описания смесей высококипящих орг. B-B -необходимость учета дополнительной вращательно-колебат. степени свободы, связанной со смещениями сегментов молекул-цепочек (напр., алкенов C 8). Для этих систем наиб, распространение получило ур-ние PHCT (Perturbed Hard Chain Theory), предложенное Дж. Прауснитцем и M. До-нахью в 1978. Индивидуальное в-во характеризуется тремя эмпирич. параметрами в ур-нии PHCT. Комбинационные правила для смеси содержат один параметр смешанного взаимодействия. Дальнейшее усовершенствование ур-ния PHCT основано на замене потенциала прямоугольной ямы, описывающей притяжение молекул , потенциалом Леннард-Джонса [ур-ние PSCT (Perturbed Soft Chain Theory)] и на учете анизотропии межмол. сил [ур-ние PACT (Perturbed Anisotropic Chain Theory)]. Последнее ур-ние хорошо описывает фазовые равновесия в системах с полярными компонентами даже без использования подгоночных параметров парного взаимодействия.
молекулы компонентов.

Все возрастающий интерес к уравнениям состояния обусловлен прежде всего практич. потребностями разработки мн. совр. технологий, связанных с абсорбционным разделением в-в, эксплуатацией нефтяных и газовых месторождений и т. п., поскольку в этих случаях требуется количеств, описание и прогнозирование фазовых равновесий в широком диапазоне т-р и давлений . Однако пока не существует достаточно универс. уравнений состояния. Все упомянутые уравнения состояния оказываются неточными при описании состояний вблизи критич. точки и не предназначены для рассмотрения критических явлений . Для этих целей разрабатываются специальные уравнения состояния, но и они пока плохо приспособлены для конкретных практич. приложений.
, включая плотную плазму .

Лит.: Рид Р., Прауснитц Дж., Шервуд Т., Свойства газов и жидкостей , пер. с англ., Л., 1982; У эйлес С., Фаловые равновесия в химической технологии , пер. с англ., ч. 1, M., 1989; Викторов А. И. (и д р.), "Ж. прикл. химии ", 1991, т. 64, № 5, с. 961-78. Г. Л. Куранов.

Еще