Изотерма адсорбции генри. Поверхностные явления и адсорбция




Для описания изотермы по рис. 2.10а используют уравнения вида:

где К и к -константы.

Приведенные уравнение являются основными в теории мономолеку- лярной адсорбции Ленгмюра. Чаще используется первый вариант, так как в случае адсорбции ПАВ справедливы все уравнения, содержащие величину А , поскольку при этом абсолютная и гиббсовская адсорбции практически одинаковы (А = Г).

При выводе уравнения Ленгмюра физическое взаимодействие на поверхности может быть представлено как квазихимическая реакция:

где А - адсорбционные центры поверхности; В - распределяемое вещество; АВ - комплекс, образующийся на поверхности.

По мерс увеличения концентрации (давления) вещества В равновесие реакции сдвигается в сторону образования комплекса и свободных центров становится меньше. Константа адсорбционного равновесия по закону действия масс имеет вид:

Введем обозначения: [В) = с ; [лв]н=Л и [а= Л 0 , в которых А - величина адсорбции; А^ - число оставшихся свободными адсорбционных

центров, приходящихся на единицу площади поверхности или единицу массы адсорбента. Если А - величина предельной адсорбции (емкость адсорбционного монослоя), то Подставляя принятые обозначения в уравнение для константы равновесия, получим выражение для константы , которое после преобразований и дает известное уравнение изотермы мономолекулярной адсорбции Ленгмюра:

Для газов вместо концентрации используется давление д (так как концентрация газов и паров при газовой адсорбции практически пропорциональна парциальным давлениям):

Для характеристики адсорбции используется степень заполнения поверхности . Относительно степени заполнения уравнение (2.9)

можно записать в виде

Константы адсорбционного равновесия в разных видах уравнений Ленгмюра , к и к") характеризуют энергию взаимодействия адсорбента и адсорбата: чем сильнее это взаимодействие, тем больше константа адсорбционного равновесия.

Известен другой вариант вывода уравнения Ленгмюра - кинетический, в котором основное внимание уделяется скорости наступления динамичного равновесия процессов адсорбции и десорбции. При этом выводе показывается, что константа адсорбционного равновесия равна отношению констант скорости адсорбции и десорбции:

Для анализа изотермы адсорбции по уравнению Ленгмюра воспроизведем типичную изотерму адсорбции по мономолекулярному механизму (рис. 2.26).

Рис. 2.26.

Анализ изотермы мономолекулярной адсорбции :

При очень малых концентрациях, когда с^О, произведением К с в знаменателе можно пренебречь, поэтому получаем А = А СС -Кс или А = К Г ‘С. Полученные соотношения соответствуют закону Генри и коэффициент пропорциональности К г - константа Генри. По закону Генри

величина адсорбции с ростом концентрации на участке АВ увеличивается линейно;

При больших концентрациях или давлениях, когда произведение К-с» 1, адсорбция стремится к предельному значению А = А #. Это соотношение на участке СД отвечает состоянию насыщения поверхности адсорбента молекулами адсорбата, когда вся поверхность адсорбента покрывается мономолекулярным слоем адсорбата;

в области средних концентраций на участке ВС уравнение Ленгмюра применимо в полной форме.

Физический смысл константы Генри, иногда называемый еще константой распределения, поясняют следующие рассуждения. Если поверхностный слой рассматривать как отдельную фазу, то перераспределение вещества между поверхностным слоем и объемом фазы будет происходить до тех пор, пока химические потенциалы обеих фаз не станут равными:

где p s - химический потенциал в поверхностном слое; p v - химический потенциал объемной фазы.

Учитывая, что , для равновесного состояния имеем , откуда

Если в области малых концентраций активности считать равными концентрациям, то поверхностная концентрация равна адсорбции

a s = с s = А и тогда Из представленных соотношений и полу

чается уравнение Генри: А = Кр-с.

Можно получить подобное выражение через давление, учитывая, что в области малых концентраций газ подчиняется закону состояния идеального газа pV = nRT , откуда . Подставляя послед

нее соотношение в уравнение адсорбции, получаем:

Уравнения Генри просты по виду, но иногда их бывает вполне достаточно для практических расчетов. На твердых поверхностях область действия этого закона мала из-за неоднородности поверхности. Но даже на однородной поверхности обнаруживается отклонение от линейной зависимости при увеличении концентрации (давления). Это объясняется уменьшением доли свободной поверхности, приводящим к замедлению роста адсорбции.

Отклонения от закона Генри учитывает эмпирическое уравнение, установленное Фрейндлихом и Бедекером на основе изучения адсорбции газов на твердых адсорбентах. Позднее это уравнение было теоретически обосновано Зельдовичем и оказалось применимым и для растворов.

Теория мономолекулярной адсорбции была создана Ленгмюром при изучении адсорбции газов на твердых поверхностях. Основные положения теории состоят в следующем:

  • - на поверхности твердого адсорбента имеются активные центры, все они энергетически однородны (поверхность эквипотенциальна) и их количество на единице площади постоянно для данного адсорбента;
  • - каждый активный ценгр удерживает только одну молекулу адсорбата, которая закреплена с ним силами физической природы (адсорбция обратима). Адсорбированная молекула образует с центром прочный комплекс и не способна перемещаться по поверхности;
  • - учитываются только силы взаимодействия молекулы с адсорбционным центром (без учета взаимодействия между молекулами адсорбага).

Несмотря на жесткие ограничения, теория широко используется и даст хорошую сходимость с практическими результатами для большого количества видов адсорбции. В настоящее время она распространяется на адсорбцию на других границах раздела.

Теория Ленгмюра объясняет адсорбцию ПАВ на границе вода - воздух, когда полярная группа, обладая большим сродством к полярной фазе, втягивается в воду, в то время как неполярный радикал выталкивается в неполярную фазу (воздух) и при малых концентрациях углеводородные цепи «плавают» на поверхности воды (это возможно из-за их гибкости). С ростом концентрации цепи поднимаются и в насыщенном адсорбционном слое занимают вертикальное положение, при этом поверхность воды сплошь покрыта «частоколом» из вертикально ориентированных молекул ПАВ. Значение поверхностного натяжения в этом случае приближается к значению чистого жидкого ПАВ на границе с воздухом. Максимальная адсорбция Г а0 именно поэтому не зависит от длины углеводородного радикала, а определяется только размерами поперечного сечения молекул.

Существование насыщенных адсорбционных слоев позволяет определять размеры молекул ПАВ. Впервые в истории химии размеры молекул были определены именно коллоидно-химическим путем и уже позже подтверждены другими методами. Поскольку в насыщенном слое молекулы плотно упакованы и имеют вертикальную ориентацию, то можно рассчитать важные характеристики мономолекулярного слоя:

Размер поперечного сечения молекул, то есть площадь, занимаемую одной молекулой ПАВ в поверхностном слое («посадочную площадку»):

Длину молекулы ПАВ, равную толщине адсорбционного слоя:

где N А - число Авогадро, р и М - плотность и молекулярная масса поверхностно-активного вещества.

Для определения постоянных параметров проводят преобразование уравнения Ленгмюра к уравнению прямой линии

Представляя экспериментальные данные в обратных осях или в осях , в первом случае по отрезку, отсекаемому на оси ординат при , определяют величину . Тангенс угла наклона прямой позволяет определить отношение и рассчитать значение пре

дельной адсорбции, по которому можно вычислить адсорбционную константу К . Во втором случае, наоборот, отрезок на ординате связан с величиной обратной предельной адсорбции , а по тангенсу угла наклона

Рассмотрим вариант определения констант уравнения Ленгмюра на примере адсорбции в системе вода - изоамиловый спирт. В таблице представлены экспериментальные данные но величинам поверхностного натяжения о растворов различной концентрации с :

Температура опыта составляет 296 К, при которой поверхностное натяжение воды равно 72,28 мДж/м

Будем применять прием графического дифференцирования, для этого построим изотерму поверхностного натяжения

и рассчитаем величины адсорбции по уравнению Гиббса:

Для упрощения расчетов обозначим через Z величину , тогда ад

сорбция определится выражением


Рис. 2.27.

Величине Z соответствует отрезок, отсекаемый на ординате касательной и горизонталью, проведенными к точке, соответствующей искомой концентрации. Для примера показано нахождение значения величины Z для точки, соответствующей концентрации 0,125 кмоль/м 3 . В примере значение величины Z равно 3,9 мДж/м 2 . Остальные результаты представлены в табл. 2.3. После этого вычисляем обратные значения концентраций и адсорбций, необходимые для работы с уравнением Ленгмюра в линейном виде:

Таблица 2.3

Обработка экспериментальных данных_

Продолжение табл. 2.3

На рис. 2.28 построен график в «обратных» осях, найти по нему константы уравнению Ленгмюра К и Г " просто, однако еще проще сделать

это с помощью Excel.

В этом случае записываем уравнение зависимости , из которого (по графику это от

резок, отсекаемый на ординате при ). Тогда значение предельной составляет Г оо = 2,098 10" 6 моль/м 2 . Это одна из констант уравнения Ленгмюра.

Вторая константа находится из коэффициента перед обратной концентрацией, равного 15500, то есть . При известном значе

Размерность адсорбционной константы = м 3 /кмоль.


Рис. 2.28.

Запишем окончательно уравнение адсорбции с найденными константами:

Подчеркнем правомерность приравнивание величин избыточной гиббсовской и абсолютной адсорбции, так как теория Ленгмюра распространяется на все поверхности (жидкие и твердые), заполняемые по моно- молекулярному механизму.

По полученным результатам построить изотерму адсорбции в рассматриваемом примере можно двумя путями, подставляя в полученное уравнение концентрации или напрямую строя график по данным первой и третьей колонки табл. 2.3 (рис. 2.29).


Рис. 2.29.

Это является наглядной проверкой правильности проведенных расчетов. Полученное с помошью Excel уравнение имеет величину достоверности аппроксимации, равную 0,99. При нанесении на 1рафик точек, для которых адсорбция рассчитывается по уравнению, обнаруживаются небольшие отклонения по сравнению с расположением точек, для которых адсорбция определяется графическом дифференцированием (из касательных). Это связано с близостью значений предельной адсорбции (2,098-10 6 моль/м 2) и адсорбции при концентрации 0,5 кмоль/м 3 (2,073-10 6 моль/м 2), а так же (в меньшей степени) округлениями при проведении расчетов.

При построении графиков вручную надо обращать внимание на такие практические особенности, как усреднение данных. Линию изотермы нужно проводить плавно, располагая между точками, а не отдельными прямыми линиями между соседними точками (рис. 2.30).


Рис. 2.30.

На рис. 2.30 показано семейство касательных при обработке изотермы адсорбции олеата натрия вручную (на оси ординат поверхностное натяжение с размерностью мДж/м 2).


Уравнение количественно описывающие процесс адсорбции называют именами их авторов.

При выводе этого уравнения поверхностный слой будем рассматривать, как отдельную фазу. Перераспределение вещества между поверхностным слоем и объемом фазы будет происходить до тех пор, пока химические потенциалы в поверхностном слое и объеме фазы не выравняются, т.е. μ=μ s (1)

Где μ s – химический потенциал вещества в поверхностном слое;

μ- химический потенциал для объемной фазы.

Если μ μ s , то адсорбция положительная,

если μ μ s , то адсорбция отрицательная.(вещество уходит с поверхности.)

Учитывая, что μ= μ 0 + RT∙ln a, (2)

μ s = + RT∙ln a s , (3)

где а- активность адсорбата в объемной фазе;

a s - активность адсорбата на поверхности.

Подставляя (2) и (3) в (1), получаем:

μ 0 + RT∙ln a = + RT∙ln a s , (4)

Преобразуя, имеем:

= const= Kг (5)

Константа Kг- называется константой распределения Генри. Она не зависит от концентрации, а зависит только от температуры- Kг= f(Т).

Если в области малых концентраций активность можно считать равной концентрации (а = с, а s = с s), то поверхностная концентрация С s =А.

Из уравнения (5) будем иметь:

Кг или А= Кг ∙С (6)

Учитывая то, что P=C∙R∙T; C= ,

Можно получить выражение адсорбции через давление:

А= или А= Кг ’ ∙P (7)

Уравнение (6) и (7) выражают Закон Генри для адсорбции:

величина адсорбции при малых давлениях газа (концентрации раствора) пропорциональна давлению (концентрации).

Данное уравнение простое, но иногда его вполне достаточно для практических расчетов. На твердых поверхностях область действия закона мала из-за неоднородности поверхности.

Но даже на однородной поверхности обнаруживается отклонение от линейной зависимости при увеличении Р или С. Это объясняется уменьшением доли свободной поверхности, приводящим к замедлению роста адсорбции.


Отклонение от закона Генри учитывает эмпирическое уравнение адсорбции, установленное Фрейндлихом .

Уравнение имеет вид:

для адсорбции газов: А= = К∙Р 1/ n (1)

для адсорбции из растворов: А= = К ’ ∙ c 1/ n (2)

где х- количество адсорбированного вещества;

m- масса адсорбента;

Р,С- равновесные давление или концентрация;

К, К’,1/n- константы, причем n 1, т.е. 1/n 1 .

Для газов 1/n= 0,2- 0,9, для растворов: 1/n=0,2- 0,5.

Величинаn характеризует степень отклонения изотермы от линейности.

Рассмотрим, какие участки изотермы адсорбции описывает уравнение Фрейндлиха.


На участке ОВ адсорбция прямопропорциональна концентрации, для него постоянная 1/n должна быть равна единице.

На участке ДЕ- наблюдается независимость адсорбции от концентрации.

Чтобы уравнение (1) описывало этот участок, необходимо, чтобы 1/n=0, но в уравнении Фрейндлиха 1/n- дробная величина. Следовательно, это уравнение справедливо только для переходной части изотермы на участке ВД, т.е. для области средних концентраций, где 0 1/n 1.

Таким образом уравнение Фрейндлиха, описывает только переходную часть изотермы, и не определяет предельную адсорбцию А .

Начальный участок ОВ – подчиняется уравнению Генри. Уравнение Фрейндлиха используется широко на практике, но только для ориентировочных расчетов.

Схематически изотерма адсорбции имеет вид:

1 участок – круто поднимающийся вверх, почти прямолинейный, показывает, что при малых давлениях (или С) адсорбция растет линейно или пропорционально этим величинам:

А = К ∙ С или А = К ∙ Р

3 участок – горизонтальный, соответствующий большим давлениям (или С), поверхность адсорбента полностью насыщена адсорбтивом:

2 участок – средний участок кривой соответствует промежуточным степеням заполнения поверхности:

А = К ∙С 1/ n , где 0 < <1 - эмперическое уравнение Фрейндлиха,

используется для аналитического выражения изотермы адсорбции

Изотерма адсорбции. Уравнение Фрейндлиха.

Величина адсорбции (абсолютная А или избыточная Г) в каждом конкретном случае определяется температурой Т и давлением р (при газообразном адсорбтиве) или температурой Т и концентрацией С (при адсорбции из растворов). Как правило, в теории адсорбции при рассмотрении адсорбционного равновесия один из этих параметров поддерживается постоянным. Так, уравнение вида А = f (р) Т или Г = f (c) Т, связывающее величину адсорбции с давлением или концентрацией при постоянной температуре, называется изотермой адсорбции. Адсорбция (если она выражена не как избыток, а как полное содержание) всегда возрастает с повышением равновесного давления или концентрации. Так как адсорбция - процесс экзотермический, то при повышении температуры величина адсорбции снижается. На рис. 26.9 приведены основные виды кривых адсорбционного равновесия. Изотермам адсорбции при трех температурах (Т 1 > Т 2 >Т 3) соответствует рис. 26.9а.

Рис 26.9. Кривые адсорбционного равновесия: изотермы (а), изобары (б) и изостеры (в) адсорбции

Уравнение, связывающее величину адсорбции с температурой при постоянном равновесном давлении А = f(T) p или постоянной равновесной концентрации Г = f (Т) с, носит название, соответственно, изобары или изопикны адсорбции (рис. 26.9 -б) ; здесь р 1 > р 2 > р 3 . Уравнение вида р = f (Т) А , изостера адсорбции (рис. 26.9 -в), связывает равновесное давление с температурой при постоянном адсорбированном количестве; в этом случае А 1 >А 2 >А 3 .

Задача любой адсорбционной теории - на базе определенной модели процесса адсорбции составить ее математическое описание. В идеале уравнение должно описывать зависимость равновесной величины адсорбции от концентрации адсорбата в объемной фазе при различных температурах, а также прогнозировать изменение теплоты адсорбции от заполнения адсорбента. Наиболее часто при этом находят уравнение изотермы адсорбции. Форма изотермы адсорбции на твердых телах зависит от многих параметров: свойств адсорбента и адсорбата, взаимодействия адсорбент адсорбат, взаимодействия молекул адсорбата между собой в газовой фазе и в адсорбированном состоянии. В области малыхдавлений (или концентраций) и соответствующих им малых заполнений поверхности взаимодействие между молекулами адсорбата незначительно и зависимость А = f(p) T сводится к простейшей форме, называемой законом Генри :

А = kp или А = k"c (26.20)

где k и к" - адсорбционный коэффициент (или коэффициент Генри), с - концентрация адсорбента в объемной фазе, р - давление пара адсорбата. Коэффициент Генри k является мерой интенсивности адсорбции. Можно показать, что любая теоретическая изотерма должна в пределе (при малых заполнениях) переходить в уравнение Генри.

В области средних концентраций зависимость адсорбции растворенных веществ от концентрации хорошо описывается эмпирическим уравнением Фрейндлиха :

(26.21)

где Х - количество адсорбированного вещества, m - масса адсорбента, βи п - константы, характерные для каждой адсорбционной системы, причем 0 < 1/n < 1 . По Фрейндллиху, n не зависит от заполнения, хотя это утверждение не вполне точно. Этим эмпирическим уравнением часто пользуются для ориентировочных расчетов адсорбции. Чаще всего оно применяется в логарифмической форме:

позволяющей построить линейную зависимость ln А - ln c и графически определить оба постоянных параметра β и n.

Поверхностные явления и адсорбция. Типы адсорбционных взаимодействий. Изотермы адсорбции газов. Уравнение Генри и Лэнгмюра. Полимолекулярная адсорбция, теория БЭТ.

ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ И АДСОРБЦИЯ

Поверхностная энергия. Адсорбция

До сих пор свойства гетерогенных систем описывались с помощью параметров и функций состояния, характеризующих каждую из фаз в целом. Однако свойства участка фазы, примыкающего к её поверхности, отличаются от свойств фазы в объеме: фактически частицы, находящиеся на поверхности каждой фазы, образуют особую поверхностную фазу, свойства которой существенно отличаются от свойств внутренних областей фазы. Частицы, расположенные на поверхности, находятся в другом окружении по сравнению с частицами, находящимися в объеме фазы, т.е. взаимодействуют как с однородными частицами, так и с частицами другого рода. Следствием этого является то, что средняя энергия g s частицы, находящейся на поверхности раздела фаз, отличается от средней энергии такой же частицы в объеме фазы g v (причем энергия частицы на поверхности может быть как больше, так и меньше энергии частицы в объеме). Поэтому важнейшей характеристикой поверхностной фазы является поверхностная энергия G s – разность средней энергии частицы, находящейся на поверхности, и частицы, находящейся в объеме фазы, умноженная на число частиц на поверхности N:

(26.1)

Очевидно, что общая величина поверхностной энергии фазы будет определяться величиной её поверхности S. Поэтому для характеристики поверхности раздела, отделяющей данную фазу от другой, вводится понятие поверхностное натяжение σ – отношение поверхностной энергии к площади поверхности раздела фаз; величина поверхностного натяжения зависит только от природы обеих фаз. Как и поверхностная энергия фазы, поверхностное натяжение может иметь как положительное, так и отрицательное значение. Поверхностное натяжение положительно, если находящиеся на поверхности частицы взаимодействуют с частицами этой же фазы сильнее, чем с частицами другой фазы (и, следовательно, g s > g v). Согласно принципу минимума свободной энергии, любая фаза будет стремиться самопроизвольно уменьшить свою поверхностную энергию; поэтому в случае положительного поверхностного натяжения (σ > 0) фаза стремится уменьшить свою поверхность. В случае если σ < 0, поверхностная энергия фазы будет уменьшаться при увеличении площади поверхности.

Влияние поверхностного слоя фазы на её общие свойства определяется долей частиц, находящихся на поверхности, от общего числа составляющих данную фазу частиц, т.е. величиной удельной поверхности фазы S/V (поверхности, приходящейся на единицу объема). Свободную энергию фазы G можно представить как сумму поверхностной G s и объемной G v энергий, пропорциональных соответственно площади поверхности и объему фазы:

Разделив это выражение на объем фазы, получаем:

Из уравнения (IV.4) следует, что при одном и том же количестве фазы (т.е. неизменном объеме) вклад поверхностной энергии в общую энергию фазы возрастает с увеличением удельной поверхности или, иначе говоря, степени дисперсности (раздробленности) фазы. В случае, когда степень дисперсности фазы невелика (удельная поверхность незначительна), вкладом поверхностной энергии в полную энергию фазы обычно пренебрегают. Вклад поверхностного слоя в свойства фазы и системы в целом учитывают при изучении дисперсных систем – гетерогенных систем, одна из фаз которой является сплошной (дисперсионная среда ), а другая – раздробленной (дисперсная фаза ).

На границе конденсированной (т.е. твердой или жидкой) фазы с газом поверхностное натяжение всегда положительно, поскольку частицы конденсированной фазы взаимодействуют друг с другом сильнее, чем с молекулами газа. Согласно принципу минимума свободной энергии, конденсированная фаза будет стремиться самопроизвольно уменьшить свою поверхностную энергию. Это может быть результатом либо уменьшения площади поверхности фазы (именно поэтому капля жидкости в невесомости принимает форму сферы), либо уменьшения поверхностного натяжения при появлении на поверхности раздела фаз новых частиц – молекул газа либо растворенного вещества. Процесс самопроизвольного изменения концентрации какого-либо вещества у поверхности раздела двух фаз называется адсорбцией . Адсорбентом называется вещество, на поверхности которого происходит изменение концентрации другого вещества – адсорбата .

Адсорбция на границе раствор – пар

В жидких растворах поверхностное натяжение σ является функцией от концентрации растворенного вещества. На рис. 4.1 представлены три возможных зависимости поверхностного натяжения от концентрации раствора (т.н. изотермы поверхностного натяжения). Вещества, добавление которых к растворителю уменьшает поверхностное натяжение, называют поверхностно-активными (ПАВ), вещества, добавление которых увеличивает или не изменяет поверхностное натяжение – поверхностно-инактивными (ПИАВ).

Рис. 26.1 Изотермы поверхностного Рис. 26.2 Изотерма адсорбции
натяжения растворов ПАВ (1, 2) и ПИАВ. ПАВ на границе раствор – пар
ПИАВ (3)

Уменьшение поверхностного натяжения и, следовательно, поверхностной энергии происходит в результате адсорбции ПАВ на поверхности раздела жидкость – пар, т.е. того, что концентрация поверхностно-активного вещества в поверхностном слое раствора оказывается больше, чем в глубине раствора.

Количественной мерой адсорбции на границе раствор-пар является поверхностный избыток Г (гамма), равный числу молей растворенного вещества в поверхностном слое. Количественное соотношение между адсорбцией (поверхностным избытком) растворенного вещества и изменением поверхностного натяжения раствора с ростом концентрации раствора определяет изотерма адсорбции Гиббса :

График изотермы адсорбции ПАВ представлен на рис. 26.2. Из уравнения (26.5) следует, что направление процесса – концентрирование вещества в поверхностном слое или, наоборот, нахождение его в объеме жидкой фазы – определяется знаком производной dσ/dС. Отрицательная величина данной производной соответствует накоплению вещества в поверхностном слое (Г > 0), положительная – меньшей концентрации вещества в поверхностном слое по сравнению с его концентрацией в объеме раствора.

Величину g = –dσ/dС называют также поверхностной активностью растворенного вещества. Поверхностную активность ПАВ при некоторой концентрации С 1 определяют графически, проводя касательную к изотерме поверхностного натяжения в точке С = С 1 ; при этом поверхностная активность численно равна тангенсу угла наклона касательной к оси концентраций:

Нетрудно заметить, что с ростом концентрации поверхностная активность ПАВ уменьшается. Поэтому поверхностную активность вещества обычно определяют при бесконечно малой концентрации раствора; в этом случае её величина, обозначаемая g о, зависит только от природы ПАВ и растворителя. Исследуя поверхностное натяжение водных растворов органических веществ, Траубе и Дюкло установили для гомологических рядов поверхностно-активных веществ следующее эмпирическое правило:

В любом гомологическом ряду при малых концентрациях удлинение углеродной цепи на одну группу СН 2 увеличивает поверхностную активность в 3 – 3.5 раза.

Для водных растворов жирных кислот зависимость поверхностного натяжения от концентрации описывается эмпирическим уравнением Шишковского :

Здесь b и K – эмпирические постоянные, причём значение b одинаково для всего гомологического ряда, а величина К увеличивается для каждого последующего члена ряда в 3 – 3,5 раза.

Рис. 26.3 Предельная ориентация молекул ПАВ в поверхностном слое

Молекулы большинства ПАВ обладают дифильным строением, т.е. содержат как полярную группу, так и неполярный углеводородный радикал. Расположение таких молекул в поверхностном слое энергетически наиболее выгодно при условии ориентации молекул полярной группой к полярной фазе (полярной жидкости), а неполярной – к неполярной фазе (газу или неполярной жидкости). При малой концентрации раствора тепловое движение нарушает ориентацию молекул ПАВ; при повышении концентрации происходит насыщение адсорбционного слоя и на поверхности раздела фаз образуется слой "вертикально" ориентированных молекул ПАВ (рис. 26.3). Образование такого мономолекулярного слоя соответствует минимальной величине поверхностного натяжения раствора ПАВ и максимальному значению адсорбции Г (рис. 26.1-26.2); при дальнейшем увеличении концентрации ПАВ в растворе поверхностное натяжение и адсорбция не изменяются.

Адсорбция на границе твердое тело – газ

При адсорбции газов на твердых телах описание взаимодействия молекул адсорбата и адсорбента представляет собой весьма сложную задачу, поскольку характер их взаимодействия, определяющий характер адсорбции, может быть различным. Поэтому обычно задачу упрощают, рассматривая два крайних случая, когда адсорбция вызывается физическими или химическими силами – соответственно физическую и химическую адсорбцию.

Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 – 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.

Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40 – 120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.

Следует подчеркнуть, что явления физической и химической адсорбции чётко различаются в очень редких случаях. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо и лишь небольшая часть – прочно. Например, кислород на металлах или водород на никеле при низких температурах адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать химическая адсорбция. При повышении температуры увеличение химической адсорбции с некоторой температуры начинает перекрывать падение физической адсорбции, поэтому температурная зависимость адсорбции в этом случае имеет четко выраженный минимум (рис. 26.4).

Рис. 26.4 Зависимость объема адсорбированного никелем водорода от температуры

При постоянной температуре количество адсорбированного вещества зависит только от равновесных давления либо концентрации адсорбата; уравнение, связывающее эти величины, называется изотермой адсорбции.

Теории адсорбции

Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела твердое тело – газ или твердое тело – раствор.

Теория мономолекулярной адсорбции Ленгмюра

Теория мономолекулярной адсорбции, которую разработал американский химик И. Ленгмюр, основывается на следующих положениях.

1) Адсорбция является локализованной и вызывается силами, близкими к химическим.

2) Адсорбция происходит не на всей поверхности адсорбента, а на активных центрах , которыми являются выступы либо впадины на поверхности адсорбента, характеризующиеся наличием т.н. свободных валентностей. Активные центры считаются независимыми (т.е. один активный центр не влияет на адсорбционную способность других), и тождественными.

3) Каждый активный центр способен взаимодействовать только с одной молекулой адсорбата ; в результате на поверхности может образоваться только один слой адсорбированных молекул.

4) Процесс адсорбции является обратимым и равновесным – адсорбированная молекула удерживается активным центром некоторое время, после чего десорбируется; т.о., через некоторое время между процессами адсорбции и десорбции устанавливается динамическое равновесие.

Рис. 26.5 Изотерма мономолекулярной адсорбции

В состоянии равновесия скорость адсорбции равна скорости десорбции. Скорость десорбции прямо пропорциональна доле занятых активных центров (х), а скорость адсорбции прямо пропорциональна произведению концентрации адсорбата на долю свободных активных центров (1 – х):

(26.9)

Отсюда находим х:

Разделив числитель и знаменатель правой части уравнения (26.10) на k A , получим:

(26.11)

Максимально возможная величина адсорбции Г о достигается при условии, что все активные центры заняты молекулами адсорбата, т.е. х = 1. Отсюда следует, что х = Г / Г о. Подставив это в уравнение (26.11), получаем:

Уравнение (26.13) есть изотерма мономолекулярной адсорбции , связывающая величину адсорбции Г с концентрацией адсорбата С. Здесь b – некоторая постоянная для данной пары адсорбент-адсорбат величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров. График изотермы адсорбции Ленгмюра приведен на рис. 26.5. Константу b можно определить графически, проведя касательную к изотерме адсорбции в точке С = 0.

При описании процесса адсорбции газов в уравнении (26.13) концентрация может быть заменена пропорциональной величиной парциального давления газа:

Теория мономолекулярной адсорбции Ленгмюра применима для описания некоторых процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата.

Теория полимолекулярной адсорбции Поляни

На практике часто (особенно при адсорбции паров) встречаются т.н. S-образные изотермы адсорбции (рис. 4.6), форма которых свидетельствует о возможном, начиная с некоторой величины давления, взаимодействии адсорбированных молекул с адсорбатом.

Рис. 26.6 Изотерма полимолекулярной адсорбции

Для описания таких изотерм адсорбции М. Поляни предложил теорию полимолекулярной адсорбции , основанную на следующих основных положениях:

1. Адсорбция вызвана чисто физическими силами .

2. Поверхность адсорбента однородна , т.е. на ней нет активных центров; адсорбционные силы образуют непрерывное силовое поле вблизи поверхности адсорбента.

3. Адсорбционные силы действуют на расстоянии, большем размера молекулы адсорбата. Иначе говоря, у поверхности адсорбента существует некоторый адсорбционный объём , который при адсорбции заполняется молекулами адсорбата.

4. Притяжение молекулы адсорбата поверхностью адсорбента не зависит от наличия в адсорбционном объеме других молекул, вследствие чего возможна полимолекулярная адсорбция.

5. Адсорбционные силы не зависят от температуры и, следовательно, с изменением температуры адсорбционный объем не меняется.

Уравнение Фрейндлиха

Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

Адсорбция на границе твердое тело – раствор

Молекулярная адсорбция из растворов

Изотермы адсорбции растворенных веществ из раствора по своему виду аналогичны изотермам адсорбции для газов; для разбавленных растворов эти изотермы хорошо описываются уравнениями Фрейндлиха или Лэнгмюра, если в них подставить равновесную концентрацию растворенного вещества в растворе. Однако адсорбция из растворов является значительно более сложным явлением по сравнению с газовой, поскольку одновременно с адсорбцией растворенного вещества часто происходит и адсорбция растворителя.

Рис. 26.8 Ориентация молекул ПАВ на поверхности адсорбента

Зависимость адсорбции от строения молекул адсорбата очень сложна, и вывести какие-либо закономерности довольно трудно. Молекулы многих органических веществ состоят из полярной (гидрофильной) и неполярной (гидрофобной) группировок, т.е. являются поверхностно-активными веществами. Молекулы ПАВ при адсорбции на твердом адсорбенте ориентируются на его поверхности таким образом, чтобы полярная часть молекулы была обращена к полярной фазе, а неполярная – к неполярной. Так, при адсорбции алифатических карбоновых кислот из водных растворов на неполярном адсорбенте – активированном угле – молекулы ориентируются углеводородными радикалами к адсорбенту; при адсорбции из бензола (неполярный растворитель) на полярном адсорбенте – силикагеле – ориентация молекул кислоты будет обратной (рис. 4.8).

Адсорбция из растворов электролитов

Адсорбция из водных растворов электролитов происходит, как правило, таким образом, что на твердом адсорбента из раствора адсорбируются преимущественно ионы одного вида. Преимущественная адсорбция из раствора или аниона, или катиона определяется природой адсорбента и ионов. Механизм адсорбции ионов из растворов электролитов может быть различным; выделяют обменную и специфическую адсорбцию ионов.

Обменная адсорбция представляет собой процесс обмена ионов между раствором и твердой фазой, при котором твердая фаза поглощает из раствора ионы какого-либо знака (катионы либо анионы) и вместо них выделяет в раствор эквивалентное число других ионов того же знака. Обменная адсорбция всегда специфична, т.е. для данного адсорбента к обмену способны только определенные ионы; обменная адсорбция обычно необратима.

При специфической адсорбции адсорбция на поверхности твердой фазы ионов какого-либо вида не сопровождается выделением в раствор эквивалентного числа других ионов того же знака; твердая фаза при этом приобретает электрический заряд. Это приводит к тому, что вблизи поверхности под действием сил электростатического притяжения группируется эквивалентное число ионов с противоположным зарядом, т.е. образуется двойной электрический слой. Взаимодействие концентрирующихся на поверхности зарядов приводит к понижению поверхностной энергии системы. Для случая специфической адсорбции электролита Песковым и Фаянсом было сформулировано следующее эмпирическое правило (правило Пескова-Фаянса ):

На поверхности кристаллического твердого тела из раствора электролита специфически адсорбируется ион, который способен достраивать его кристаллическую решетку или может образовывать с одним из ионов, входящим в состав кристалла, малорастворимое соединение.

Если рассматривать динамическую картину адсорбции, то ее величина будет тем больше, чем больше число ударов молекул газа о поверхность (т.е. чем больше давление газа) и чем больше время пребывания молекулы на поверхности от момента удара до момента ее перехода обратно в газовую фазу.

Поэтому, по де Бэру, величина адсорбции:

a=n ср ∙τ (2.4)

где n ср - среднее число молекул, ударяющихся о поверхность в единицу времени, τ - среднее время пребывания молекул на поверхности.

В этой формуле предполагается, что каждый удар молекулы сопровождается задержкой ее на поверхности, независимо от того, есть уже на ней другие молекулы или нет. В действительности, молекула, ударившаяся в уже занятое место, может отразиться обратно в газовую фазу или задержаться. Учет этих обстоятельств потребовал бы введения зависимости от занятости поверхности, т.е. доли ее покрытия ранее адсорбированными молекулами. Поэтому первое упрощающее положение рассматриваемой модели состоит в том, что любая соударяющаяся с поверхностью молекула адсорбируется на ней независимо от наличия на поверхности других молекул. Очевидно что это предположение близко соответствует случаю очень малых концентраций адсорбированных молекул, когда, действительно, почти каждая молекула попадает на свободное место и вероятность се попадания на занятое место ничтожно мала.

Конечно, время пребывания молекулы на поверхности должно зависеть от энергии адсорбции. Молекулы, попавшие на места, где эта энергия больше, будут дольше удерживаться на поверхности, дольше дожидаясь своего "часа", когда флуктуации поверхностной энергии вытолкнут ее обратно в газовую фазу. Учет энергетической неоднородности, однако намного усложнил бы описание адсорбции. Поэтому второе упрощающее предположение состоит в допущении однородности поверхности.

Используя теоретические положения кинетической теории газов при указанных допущениях было получено уравнение изотермы адсорбции Генри:

а = К∙Р, (2.5)

где K – постоянная Генри, зависящая от числа Авогадро, молекулярной массы, газовой постоянной, абсолютной температуры и других величин, которые считают постоянными согласно принятым допущениям; Р - давление газа.

Константа К уравнения Генри (тангенс угла наклона прямой) зависит от температуры и энергии взаимодействия адсорбат - адсорбент. Чем меньше температура и чем больше взаимодействие адсорбированных молекул с поверхностью адсорбента, тем больше К, тем круче изотерма адсорбции.

Уравнение означает, что в этой идеальной модели величина адсорбции прямо пропорциональна давлению пара или газа. Это название данная зависимость получила по аналогии с известным в физической химии законом Генри, согласно которому объем газа, растворенного в твердом теле или жидкости, пропорционален его давлению.

В соответствии с этим уравнением можно сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации).

Итак, по принятым допущениям, изотерма Генри должна описывать экспериментальные данные, полученные при малых заполнениях на однородных поверхностях.

Первое допущение оправдывается при изучении адсорбции при очень малых давлениях. Что касается второго, то адсорбцию практически всегда измеряют на неоднородных поверхностях. Однако адсорбция при очень малых давлениях отвечает очень малым степеням покрытия. Это означает, что все зависит от того, насколько неоднородна не вся поверхность, а только малая ее доля, покрываемая при малых давлениях. В реальных условиях при адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента.

Закон Генри можно сформулировать следующим образом: при разбавлении системы (уменьшение давления) коэффициент распределения стремится к постоянному значению, равному константе распределении Генри. Относительно величины адсорбции А этот закон запишется так:

Эти уравнения представляют собой изотермы адсорбции вещества при малых концентрациях. В соответствии с ними закон Генри можно сформулировать так: величина адсорбции при малых давлениях газа (концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации).

Отклонения от закона Генри, выражаемые изменениями коэффициентов активности в фазах, обычно не позволяют описать и прогнозировать ход изотерм с увеличением концентрации.

(давления) адсорбата. Чтобы получить теоретическую изотерму адсорбции, описывающую более широкую область концентраций, необходимо использование представлений о механизме адсорбции и конкретных моделей.

Большую долю отклонений коэффициента активности адсорбата в поверхностном слое от единицы можно учесть, используя представление об адсорбции как о квазихимической реакции между адсорбатом и адсорбционными центрами поверхности адсорбента. В этом заключается основная идея адсорбционной теории Ленгмюра. Это положение уточняется следующими допущениями:

1) адсорбция локализована (молекулы не перемещаются по поверхности) на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбата; в результате образуется мономолекулярный слой;

2) адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна;

3) адсорбированные молекулы не взаимодействуют друг с другом.

Лиофильные дисперсные системы. Классификация и общая характеристика пав. Термодинамика и механизм мицеллообразования. Строение мицелл пав в водных и углеводородных средах. Солюбилизация.

Все дисперсные системы в зависимости от механизма процесса их образования по классификации П. А. Ребиндера подразделяют на лиофильные, которые получаются при самопроизвольном диспергировании одной из фаз (самопроизвольное образование гетерогенной свободнодисперсной системы), и лиофобные, получающиеся в результате диспергирования и конденсации с пересыщением (принудительное образование гетерогенной свободноднсперсной системы).

Если с увеличением концентрации вещества поверхностное натяжение на границе раздела фаз понижается, то такое вещество называют поверхностно-активным. Для таких веществ поверхностная активность

Наличие гидрофильной и олеофильной частей у молекул ПАВ является характерной отличительной особенностью их строения. По способности к диссоциации в водных растворах поверхностно-активные вещества делят на ионогенные и неионогенные. В свою очередь ионогенные ПАВ подразделяют на анионные, катионные и амфолитпые (амфотерные).

1) Анионные ПАВ диссоциируют в воде с образованием поверхностно-активного аниона.

2) Катионные ПАВ диссоциируют в воде с образованием поверхностно-активного катиона.

3) Амфолитные ПАВ содержат две функциональные группы, одна из которых имеет кислый, а другая основный характер, например карбоксильную и аминную группы. В зависимости от рН среды амфолитные ПАВ проявляют анионоактивные или катионоактивные свойства.

Все ПАВ относительно поведения их в воде делят на истинно растворимые и коллоидные.

Истинно растворимые ПАВ в растворе находятся в молекулярно-дисперсном состоянии вплоть до концентраций, соответствующих их насыщенным растворам и разделению системы на две сплошные фазы.

Главной отличительной особенностью коллоидных ПАВ является способность образовывать термодинамически устойчивые (лиофильные) гетерогенные дисперсные системы (ассоциативные, или мицеллярные, коллоиды). К основным свойствам коллоидных ПАВ, обусловливающим их ценные качества и широкое применение, относятся высокая поверхностная активность; способность к самопроизвольному мицеллообразованию - образованию лиофильных коллоидных растворов при концентрации ПАВ выше некоторого определенного значения, называемого критической концентрацией мицеллообразования (KKM); способность к солюбилизации - резкому увеличению растворимости веществ в растворах коллоидных ПАВ вследствне их «внедрения» внутрь мицеллы; высокая способность стабилизировать различные дисперсные системы.

При концентрациях выше KKM молекулы ПАВ собираются в мицеллы (ассоциируют) и раствор перехолит в мицеллярную (ассоциативную) коллоидную систему.

Под мицеллой ПАВ понимают ассоциат дифильных молекул, лиофильные группы которых обращены к соответствующему растворителю, а лиофобные группы соединяются друг с другом, образуя ядро мицеллы. Число молекул, составляющих мицеллу, называют числом ассоциации, а общую сумму молекулярных масс молекул в мицелле, или произведение массы мицеллы на число Авогадро, - мицеллярной массой. Определенное ориентирование дифильных молекул ПАВ в мицелле обеспечивает минимальное межфазное натяжение на границе мицелла - среда.

П
ри концентрациях ПАВ в водном растворе, несколько превышающихKKM, согласно представлениям Гартли образуются сферические мицеллы (мицеллы Гартли). Внутренняя часть мицелл Гартли состоит из переплетающихся углеводородных радикалов, полярные группы молекул ПАВ обращены в водную фазу. Диаметр таких мицелл равен удвоенной длине молекул ПАВ. Число молекул в мицелле быстро растет в пределах узкого интервала концентраций, а при дальнейшем увеличении концентрации практически не изменяется, а увеличивается число мицелл. Сферические мицеллы могут содержать от 20 до 100 молекул и более.

При увеличении концентрации ПАВ мицеллярная система проходит ряд равновесных состояний, различающихся по числам ассоциации, размерам и форме мицелл. При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой, что способствует их деформации. Мицеллы стремятся принять цилиндрическую, дискообразную, палочкообразную, пластинчатую форму.

Мицеллообразование в неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с молекулами растворителя. Образующиеся мицеллы обращенного вида содержат внутри негидратированные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число ассоциации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела.

Явление растворения веществ в мицеллах ПАВ называется солюбилизацией. Способ включения молекул солюбилизата в мицеллы в водных растворах зависит от природы вещества. Неполярные углеводороды, внедряясь в мицеллы, располагаются в углеводородных ядрах мицелл. Полярные органические вещества (спирты, амины, кислоты) встраиваются в мицеллу между молекулами ПАВ так, чтобы их полярные группы были обращены к воде, а липофильные части молекул ориентированы параллельно углеводородным радикалам ПАВ. Возможен и третий способ включения солюбилизата в мицеллы, особенно характерный для неионогенных ПАВ. Молекулы солюбилизата, например фенола, не проникают внутрь мицелл, а закрепляются на их поверхности, располагаясь между беспорядочно изогнутыми полиоксиэтиленовыми цепями.

Солюбилизация - самопроизвольный и обратимый процесс; данной концентрации ПАВ и температуре соответствует вполне определенное насыщение раствора солюбилизатом. В результате солюбилизации получаются устойчивые дисперсные системы подобные самопроизвольно образующимся ультрамнкрогетерогенным эмульсиям.

Определите поверхностную и полную (внутреннюю) энергию 4 г водяного тумана, имеющего частицы с дисперсностью 5·10 7 м -1 , t = 20º C , σ = 72 мДж/м 2 ; d σ/ dT = ‑ 0,16 мДж/(м 2 ·К); ρ = 1000 кг/м 3 .

Экзаменационный билет № 10

Теopия полимолекулярной адсорбции БЭТ: исходные положения, вывод уравнения изотермы и его анализ. Линейная форма уравнения БЭТ. Определение удельной поверхности адсорбентов, катализаторов и других пористых тел.

Уравнение Ленгмюра можно использовагь только при условии, что адсорбция вещества сопровождается образованием мономолекулярного слоя.

В большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и влияние поверхностных сил может распространяться на второй, третий и последующие адсорбционные слои, в результате проходит полимолекулярная адсорбция.

Современная форма уравнения полимолекулярной адсорбции - основного уравнения обобщенной теории Ленгмюра - была предложена Брунауэром, Эмметом и Теллером.

В этой теории дополнительным допущением к тем, которые были положены в основу вывода уравнения изотермы Ленгмюра, является представление об образовании на поверхности адсорбента «последовательных комплексов» адсорбционных центров с одной, двумя, тремя и т. д. молекулами адсорбата. Тогда процесс адсорбции можно представить в виде последовательных квазихимических реакций:

Константы равновесия этих реакций соответственно равны

Обозначим:

Общее число активных центров на адсорбенте, или емкость монослоя, будет равна

После ряда вычислений с применением теории рядов, окончательно получим:

Данное соотношение является основным уравнением обобщенной теории Ленгмюра и называется уравнением полимолекулярной адсорбции БЭТ.

При обработке экспериментальных результатов уравнение БЭТ обычно используют в линейной форме:

Оно позволяет графически определить оба постоянных параметра A ∞ и С:

Экспериментальное определение A ∞ позволяет рассчитать удельную поверхность адсорбента (поверхность единицы массы адсорбента): .