Как происходит синтез белка. Из пяти аминокислот был синтезирован пептид




В каждой области науки есть своя «синяя птица»; кибернетики мечтают о «думающих» машинах, физики - об управляемых термоядерных реакциях, химики - о синтезе «живого вещества» - белка. Синтез белка долгие годы был темой фантастических романов, символом грядущего могущества химии. Это объясняется и той огромной ролью, какая принадлежит белку в мире живого, и теми трудностями, которые неизбежно вставали перед каждым смельчаком, отважившимся «сложить» из отдельных аминокислот замысловатую мозаику белка. И даже еще не самого белка, а только .

Разница между белками и пептидами не только терминологическая, хотя молекулярные цепи и тех и других состоят из аминокислотных остатков. На каком-то этапе количество переходит в качество: пептидная цепь - первичная структура - обретает способность сворачиваться в спирали и клубки, образуя вторичную и третичную структуры, характерные уже для живой материи. И тогда пептид становится белком. Четкой границы здесь не существует - на полимерной цепи нельзя поставить демаркационный знак: досель - пептид, отсель - белок. Но известно, например, что адранокортикотропный гормон, состоящий из 39 остатков аминокислот,- это полипептид, а гормон инсулин, состоящий из 51 остатка в виде двух цепей,- это уже белок. Простейший, но все же белок.

Способ соединения аминокислот в пептиды был открыт в начале прошлого века немецким химиком Эмилем Фишером. Но еще долго после этого химики не могли всерьез помышлять не только о синтезе белка или 39-членных пептидов, но даже значительно более коротких цепей.

Процесс синтеза белка

Для того, чтобы соединить между собой две аминокислоты, надо преодолеть немало трудностей. Каждая аминокислота, подобно двуликому Янусу, имеет два химических лица: карбоксильную кислотную группу на одном конце и аминную основную группу - на другом. Если от карбоксила одной аминокислоты отнять группу ОН, а от аминной группы другой - атом , то образовавшиеся при этом два аминокислотных остатка могут соединиться друг с другом пептидной связью, и в результате возникнет простейший из пептидов - дипептид. И отщепится молекула воды. Повторяя эту операцию, можно наращивать длину пептида.

Однако эта, казалось бы, на первый взгляд несложная операция практически трудноосуществима: аминокислоты очень неохотно соединяются друг с другом. Приходится их активировать, химически, и «подогревать» один из концов цепи (чаще всего карбоксильный), и вести реакцию, строго соблюдая необходимые условия. Но это еще не все: вторая сложность состоит в том, что соединяться друг с другом могут не только остатки разных аминокислот, но и две молекулы одной кислоты. При этом строение синтезируемого пептида будет уже отличаться от желаемого. Больше того, каждая аминокислота может иметь не две, а несколько «ахиллесовых пят» - боковых химически активных групп, способных присоединять аминокислотные остатки.

Чтобы не дать реакции свернуть с заданного пути, необходимо закамуфлировать эти ложные мишени - «запечатать» на время осуществляемой реакции все реакционноспособные группы аминокислоты, кроме одной, присоединив к ним так называемые защитные группировки. Если этого не сделать, то цель будет расти не только с обоих концов, но и вбок, и аминокислоты уже не удастся соединить в заданной последовательности. А ведь именно в этом и заключается смысл всякого направленного синтеза.

Но, избавляясь таким образом от одной неприятности, химики столкнулись с другой: защитные группировки после окончания синтеза нужно удалить. Во времена Фишера в качестве «защиты» применялись группировки, которые отщеплялись гидролизом. Однако реакция гидролиза обычно оказывалась слишком сильным «потрясением» для полученного пептида: с трудом построенная его «конструкция» разваливалась как только с нее снимали «строительные леса» - защитные группировки. Лишь в 1932 году ученик Фишера М. Бергманн нашел выход из этого положения: он предложил защищать аминогруппу аминокислоты карбобензоксигруппой, которую можно было удалить без повреждения пептидной цепи.

Синтез белка из аминокислот

В течение последующих лет был предложен ряд так называемых мягких методов «сшивки» аминокислот друг с другом. Однако все они фактически были лишь вариациями на тему метода Фишера. Вариациями, в которых иногда даже трудно было уловить исходную мелодию. Но сам принцип оставался все тем же. И все теми же оставались трудности, связанные с защитой уязвимых групп. За преодоление этих трудностей приходилось расплачиваться увеличением числа стадий реакции: один элементарный акт - соединение двух аминокислот - распадался на четыре этапа. А каждая лишняя стадия - это неизбежные потери.

Если даже предположить, что каждая стадия идет с полезным выходом в 80% (а это хороший выход), то через четыре этапа эти 80% «растают» до 40%. И это при синтезе только дипептида! А если аминокислот будет 8? А если 51, как в инсулине? Прибавьте к этому сложности, связанные с существованием двух оптических «зеркальных» форм молекул аминокислот, из которых в реакции нужна только одна, приплюсуйте проблемы отделения образующихся пептидов от побочных продуктов, особенно в тех случаях, когда они одинаково растворимы. Что же получится в сумме: Дорога в никуда?

И все же эти трудности не останавливали химиков. Погоня за «синей птицей» продолжалась. В 1954 году были синтезированы первые биологически активные гормоны-полипептиды - вазопрессин и окситоцин. В них было по восемь аминокислот. В 1963 году был синтезирован 39-членный полипептид АКТГ - адренокортикотропный гормон. Наконец, химики США, Германии и Китая синтезировали первый белок - гормон инсулин.

Как же так, скажет читатель, трудная дорога, оказывается, привела не в никуда и не куда-нибудь, а к осуществлению мечты многих поколений химиков! Это же эпохальное событие! Верно, это - эпохальное событие. Но давайте оценим его трезво, отрешившись от сенсационности, восклицательных знаков и чрезмерных эмоций.

Никто не спорит: синтез инсулина - огромная победа химиков. Это колоссальный, титанический труд, достойный всякого восхищения. Но вместе с тем эго, по существу, и потолок старой химии полипептидов. Это победа на грани поражения.

Синтез белков и инсулин

В инсулине 51 аминокислота. Чтобы соединить их в нужной последовательности, химикам потребовалось провести 223 реакции. Когда спустя три года после начала первой из них была закончена последняя, выход продукта составлял меньше одной сотой процента. Три года, 223 стадии, сотая доля процента - согласитесь, победа носит чисто символический характер. Говорить о практическом применении этого метода очень трудно: слишком велики связанные с его реализацией расходы. А ведь в конечном счете речь идет о синтезе не драгоценных реликвий славы органической химии, а о выпуске жизненно важного лекарственного препарата, который необходим тысячам людей во всем мире. Так классический метод синтеза полипептидов исчерпал себя на первом же, самом простом белке. Значит, «синяя птица» вновь ускользнула из рук химиков?

Новый метод синтеза белка

Примерно за полтора года до того, как мир узнал о синтезе инсулина, в печати промелькнуло еще одно сообщение, которое вначале не привлекло особого внимания: американский ученый Р. Мэрифилд предложил новый метод синтеза пептидов. Поскольку сам автор поначалу не дал методу должной оценки, и в нем было много недоработок, выглядел он в первом приближении даже хуже существовавших. Однако уже в начале 1964 года, когда Мэрифилду удалось с помощью своего метода осуществить полный синтез 9-членного гормона с полезным выходом в 70%, ученые изумились: 70% после всех этапов - это 9% полезного выхода на каждой стадии синтеза.

Основная идея нового метода заключается в том, что растущие цепочки пептидов, которые раньше были брошены на произвол хаотического движения в растворе, теперь привязывались одним концом к твердому носителю - их как бы заставляли стать на якорь в растворе. Мэрифилд брал твердую смолу и к ее активным группам «привязывал» за карбонильный конец первую из собираемых в пептид аминокислоту. Реакции шли внутри отдельных частичек смолы. В «лабиринтах» ее молекул сначала появлялись первые короткие ростки будущего пептида. Затем в сосуд вводили вторую аминокислоту, ее молекулы сшивались своими карбонильными концами со свободными аминными концами «привязанной» аминокислоты, и в частицах вырастал еще один «этаж» будущего «здания» пептида. Так, этап за этапом, постепенно наращивался весь пептидный полимер.

Новый метод имел несомненные преимущества: прежде всего в нем была решена проблема отделения ненужных продуктов после присоединения каждой очередной аминокислоты - эти продукты легко смывались, а пептид оставался пришитым к гранулам смолы. Одновременно исключалась проблема растворимости растущих пептидов - один из главных бичей старого метода; раньше они нередко выпадали в осадок, практически переставая участвовать в процессе роста. Пептиды, «снимаемые» после окончания синтеза с твердой подложки, получались почти все одинакового размера и строения, во всяком случае, разброс в структуре был меньше, чем при классическом методе. И соответственно больше полезный выход. Благодаря этому методу синтез пептидов - кропотливый, трудоемкий синтез - легко поддается автоматизации.

Мэрифилд соорудил несложный автомат, который сам по заданной программе проделывал все положенные операции - подачу реагентов, смешивание, слив, промывку, отмер дозы, добавление новой порции и так далее. Если по старому методу на присоединение одной аминокислоты приходилось травить 2-3 дня, то Мэрифилд на своем автомате соединял за день 5 аминокислот. Разница - в 15 раз.

В чем состоят трудности синтеза белков

Метод Мэрифилда, названный твердофазным, или гетерогенным, сразу же был принят на вооружение химиками всего мира. Однако уже через короткое время стало ясно: новый метод вместе с крупными достоинствами имеет и ряд серьезных недостатков.

По мере роста пептидных цепей может случиться так, что в какой-то из них окажется пропущенным, скажем, третий «этаж» - третья по счету аминокислота: ее молекула не дойдет до места соединения, застряв где-нибудь по дороге в структурных «дебрях» твердого полимера. И тогда, даже если все остальные аминокислоты, начиная с четвертой, выстроятся в должном порядке, это уже не спасет положения. Полученный полипептид по своему составу, а следовательно, и по своим свойствам не будет иметь ничего общего с получаемым веществом. Произойдет то же самое, что и при наборе телефонного номера; стоит пропустить одну цифру - и нам уже не поможет тот факт, что все остальные мы набрали правильно. Отделить же такие ложные цепи от «настоящих» практически невозможно, и препарат оказывается засоренным примесями. Кроме того, оказывается, что синтез нельзя вести на какой угодно смоле - ее нужно тщательно подбирать, так как свойства растущего пептида зависят в какой-то мере от свойств смолы. Поэтому ко всем этапам синтеза белка необходимо подходить максимально тщательно.

Синтез белка ДНК, видео

И под конец, предлагаем вашему вниманию образовательное видео о том, как происходит синтез белка в молекулах ДНК.

Первый синтез
пептидного гормона – окситоцина

В 1953 г. американский ученый Винсент Дю Виньо совместно с сотрудниками выяснил строение окситоцина – циклического полипептида. Cреди известных природных соединений подобные циклические структуры ранее не встречались. В следующем году ученый впервые осуществил синтез этого вещества. Это был первый случай синтеза полипептидного гормона в условиях in vitro.

Дю Виньо известен в научном мире своими исследованиями на стыке химии и медицины. В середине 1920-х гг. предметом его научного интереса было изучение функции серы в инсулине – гормоне 1 поджелудочной железы, регулирующем процесс углеводного обмена и поддержания нормального уровня сахара (глюкозы) в крови. Интерес молодого человека к химии инсулина зародился, по его воспоминаниям, после одной из лекций, прочитанных профессором Уильямом К.Розе сразу же после открытия этого вещества Фредериком Г.Бантингом 2 и Джоном Дж.Р.Маклеодом. Поэтому, когда после окончания университета Джон Р.Мурлин из Рочестерского университета предложил ему заняться изучением химической природы инсулина, молодой ученый посчитал это предначертанным судьбой предложением. «Шанс поработать над химией инсулина перечеркнул все остальные мои научные ожидания, – отмечал впоследствии Дю Виньо, – поэтому я сразу же принял предложение профессора Мурлина».

Статья опубликована при поддержке компании "vivozmysora.ru". Компания предлагает услуги по вывозу мусора в Москве и Московской области, заказ контейнера. Доступные цены, приезд машины в указанное время, транспортировка отходов контейнерами 8-27 кубов, вывоз осуществляется в специализированные полигоны. Профессиональные водители с большим опытом, качественный сервис. Подробную информацию Вы сможете узнать на странице сайта компании.

За время работы в Рочестерском университете Дю Виньо удалось высказать первые предположения о химическом составе инсулина, которые в значительной степени были отражены в его диссертации «Сера инсулина», защищенной в 1927 г. Согласно воззрениям Дю Виньо инсулин являлся одним из производных аминокислоты цистина. Он идентифицировал инсулин как серосодержащее соединение, в котором серные фрагменты представляют собой дисульфидные мостики. Он высказал также соображения о пептидной 3 природе инсулина.
Следует отметить, что данные Дю Виньо о том, что инсулин является серосодержащим соединением, хорошо согласовывались с основными выводами работ, проводимых в то время в этом направлении профессором Джоном Якобом Абелем с сотрудниками в университете Джона Хопкинса. Поэтому стипендия Национального исследовательского совета, которую молодой ученый получил сразу же после защиты диссертации, оказалась очень кстати. Благодаря ей Дю Виньо работал некоторое время под руководством профессора Абеля в медицинской школе университета Джона Хопкинса.
Профессор Абель, признанный авторитет в области изучения химии гормонов, придерживался в то время точки зрения, что инсулин является белковым соединением. Такие взгляды шли вразрез с доминировавшими в те годы представлениями. Как вспоминал сам Дю Виньо, «это было время, когда как химики, так и биологи никак не могли воспринять тот факт, что энзим может быть белковым соединением». Незадолго до этого профессор Абель смог впервые выделить инсулин в кристаллическом виде (1926). В планы Дю Виньо, когда он устроился на стажировку к Абелю, входило следующее: выделить из кристаллов инсулина аминокислоту цистин и попытаться изучить ее строение. Это ему очень быстро удалось осуществить. В результате исследований совместно с сотрудниками профессора и при его непосредственной помощи молодой ученый наглядно продемонстрировал образование ряда аминокислот при расщеплении молекулы инсулина. Одной из них была как раз серосодержащая аминокислота цистин. При этом опыты показали, что содержание серы в инсулине прямо соотносится с содержанием серы в цистине. Но достигнутые результаты требовали изучения других серосодержащих аминокислот.
Продолжение финансовой поддержки со стороны Национального исследовательского совета еще на один год позволило Дю Виньо посетить известные научные биохимические школы Западной Европы (Дрезден, Эдинбург, Лондон), там он смог получить дополнительный опыт в области изучения пептидов и аминокислот.
По возвращении в США ученый сначала работал в Иллинойском университете, а через три года перешел в медицинскую школу университета Джорджа Вашингтона. Здесь он продолжал свои исследования инсулина. Особенно интересными оказались его работы по изучению влияния дисульфидных связей в цистине на гипогликемический эффект инсулина (понижения сахара в крови). Работы в области инсулина стимулировали также новое направление исследований – изучение гормонов гипофиза 4 .
Важным направлением его работ в университете Джорджа Вашингтона стало изучение механизма конверсии метионина в цистин в живых организмах. В последующие годы именно эти исследования подвели его к проблеме изучения биологического трансметилирования (переноса метильных групп от одной молекулы на другие).
В 1938 г. ученый был приглашен в Медицинский колледж Корнеллского университета. Здесь он продолжил изучение инсулина и развернул исследования по изучению гормонов задней доли гипофизной железы.
В годы второй мировой войны эти исследования пришлось на время прервать. Ученый со своими сотрудниками работал над синтезом пенициллина. По окончании войны Дю Виньо смог вернуться к прежним исследованиям. Особенно интенсивно он занялся работами по выделению ряда гормонов из коммерчески доступных экстрактов гипофиза и тканей гипофиза быка и свиньи.
Задняя доля гипофизной железы вырабатывает ряд гормонов, два из которых к тому времени были выделены в чистом виде. Один из них – окситоцин, стимулирующий гладкую мускулатуру матки, другой – вазопрессин – гормон, сокращающий периферические артериолы и капилляры, тем самым обусловливая повышение давления крови. Эти гормоны, как оказалось, очень трудно различать, т. к. они обладают сходными физическими свойствами. Именно из-за этого до середины 1920-х гг. медики и биохимики считали их одним веществом, обладающим широким спектром биологической активности. Благодаря совершенствованию методов химического анализа, в
частности фракционного осаждения, хроматографии и электрофореза, к 1940-м гг. эти гормоны удалось частично разделить.
В 1949 г. Дю Виньо, применив метод «противоточного распределения» для продажного экстракта, имеющего окситоциновую активность 20 ед/мг, получил препарат с активностью 850 ед/мг. Это сподвигло ученого предпринять попытку изучить строение вещества. С этой целью он осуществил фрагментацию полипептидной цепи. В результате полного гидролиза препарата окситоцина и данных анализа его аминокислотного состава Дю Виньо было установлено наличие восьми различных аминокислот в эквимолекулярном соотношении. Количество выделившегося аммиака соответствовало трем амидным группам типа
–CONH 2 , молекулярная масса – мономерному октапептиду. Один из восьми аминокислотных остатков был идентифицирован как цистин. Опыты по окислению цистина в окситоцине показывали, что обнаруженный ранее Дю Виньо дисульфидный мостик в цистине является частью кольцевой системы окситоцина.
Последовательность восьми аминокислот в окситоцине была установлена Дю Виньо с сотрудниками окончательно лишь в 1953 г. Следует отметить, что параллельно группе Дю Виньо над теми же проблемами в Вене работал профессор Ганс Туппи (Венский университет), который также в 1953 г. независимо от Дю Виньо установил последовательность аминокислот в окситоцине, использовав в своей работе метод Сенгера 5 .
Дю Виньо шел несколько иным путем. Он и его сотрудники основывались главным образом не на анализе концевых аминокислот, а на идентификации компонентов большого числа низших пептидов. Они исследовали также реакцию окисленного окситоцина с бромной водой, в результате которой образовывались гептапептид и бромированный пептид. Изучение строения последнего показывало, что последовательность аминокислот в соответствующем дипептиде: цистин – тиразин (обозначения см. в таблице).
Далее динитрофенильным методом было установлено, что N-концевой аминокислотой в гептапептиде является изолейцин. По заключению Дю Виньо из этого вытекает, что N-концевая последовательность в окисленном окситоцине:

HO 3 S – цис – тир – изл.

Аминокислоты из гормона окситоцина

Из тринадцати перечисленных ниже пептидов первые четыре были получены частичным гидролизом гептапептида, вторая группа – гидролизом окситоцина (при этом цистеиновые остатки превращались в остатки аланина). Затем отделяли нейтральную фракцию и обрабатывали бромной водой для окисления цистеинового звена в звено цистеиновой кислоты; полученный кислый пептид отделяли от нейтрального на ионнообменных смолах. Третья группа пептидов была получена гидролизом окситоцина, десульфированного на никеле Ренея. В приводимых ниже формулах, если последовательность аминокислот в пептидах известна, символы аминокислот разделены тире; если последовательность неизвестна, то символы разделены запятой.

Из гептапептида:

1. (асп – цис – SO 3 H).
2. (цис – SO 3 H, про).
3. (цис – SO 3 H, про, лей).
4. (цис – SO 3 H, про, лей, гли).

Из окситоцина:

5. (лей, гли, про).
6. (тир, цис – S – S – цис, асп, глу, лей, изл).
7. (тир, цис – S – S – цис, асп, глу).
8. (цис – S – S – цис, асп, глу).
9. (цис – SO 3 H, асп, глу).

Из десульфированного окситоцина:

10. (ала, асп).
11. (ала, асп, глу).
12. (глу, изл).
13. (ала, асп, глу, лей, изл).

Учитывая строение полученных пептидов и используя наложение отдельных компонентов пептидов, Дю Виньо с сотрудниками вывел следующую последовательность аминокислот в окситоцине:

цистин – тиразин – изолейцин – глутамин – NH 2 – аспарагин – NH 2 – цистин – пролин – лейцин – глицин – NH 2 .

Установленная ими структура окситоцина представлена на рис. 1.

Следует отметить, что одновременно с окситоцином Дю Виньо была определена структура другого гормона задней доли гипофиза – вазопрессина.
Структура гормона окситоцина была подтверждена его химическим синтезом в 1954 г., что являло собой впервые осуществленный полный синтез природных пептидов. Синтез включал конденсацию N-карбобензокси-S-бензилдипептида (I) с триамидом гептапептида (II) с помощью тетраэтилпирофосфита. После удаления карбобензокси- и бензильных групп, защищавших амино- и сульфгидрильные группы соответственно в обоих пептидах, образовавшийся нонапептид окисляли воздухом, в результате чего был получен окситоцин (рис. 2).
Так были осуществлены первый структурный анализ и первый синтез полипептидного гормона – выдающееся достижение в биохимии и медицине. С работ Дю Виньо в науке началась эра химического синтеза биологически активных природных пептидов.


Рис.2.
Общая схема синтеза окситоцина по Дю Виньо

Как известно, в 1955 г. Дю Виньо была вручена Нобелевская премия по химии «за работу с биологически активными соединениями, и прежде всего за впервые осуществленный синтез полипептидного гормона».

1 Согласно классической точке зрения гормоны – это биологически активные вещества – регуляторы эндогенного происхождения, т. е. синтезируемые в организме, а не вносимые извне. Химическая природа гормонов различна. Это белки, пептиды, производные аминокислот, стероиды, липиды.
2 В 1922 г. Ф.Бантинг с сотрудниками впервые выделил инсулин в чистом виде.
3 Пептиды – органические природные или синтетические вещества, молекулы которых построены из остатков a-аминокислот, соединенных между собой пептидными связями С(О)–NH. По числу этих остатков различают дипептиды, трипептиды и т. д. Пептиды с длинной цепью называют полипептидами.
4 Гипофиз – центральная железа внутренней секреции. Железы внутренней секреции выделяют продукты своего обмена в кровь.
5 В полипептидной цепи белка с одной стороны расположен аминокислотный остаток, несущий свободную a-аминогруппу (амино- или N-концевой остаток), а с другой – остаток со свободной a-карбоксильной группой (карбоксильный или С-концевой остаток). Анализ концевых остатков играет важную роль в процессе определения аминокислотной последовательности белка. Например, на первом этапе исследования он дает возможность оценить число полипептидных цепей, составляющих молекулу белка, и степень гомогенности исследуемого препарата. Первый метод идентификации концевых аминогрупп в пептидах (динитрофторбензильный метод) был разработан Фредериком Сенгером в 1945 г.

ЛИТЕРАТУРА

Plane R. Interview with Vincent du Vigneaud. Journal of Сhemical Education, 1976, v. 53, №1, p. 8–12;
Du Vigneaud V. A Trail of Research in Sulfur Chemistry and Metabolism and Related Fields. Ithaca, New York: Cornell University Press, 1952;
Bing F. Vincent du Vigneaud. Journal of Nutrition, 1982, v. 112, p. 1465–1473;
Du Vigneaud V., Melville D.B., Gyo..rgy P., Rose K.S. Identity of Vitamin H with Biotin. Science, 1940, v. 92, p. 62–63; Лауреаты Нобелевской премии. Энциклопедия. Пер. с англ. Т. 2. М.: Прогресс, 1992.

ДЮ ВИНЬО Винсент (18.V.1901 – 11.XII.1978) родился в Чикаго (штат Иллинойс). Его отец, Альфред Дж. Дю Виньо, был изобретателем, инженером-конструктором. Интерес к естественным наукам у мальчика проявился достаточно рано. Уже в школьные годы он ставил в домашней лаборатории одного из своих товарищей опыты по химии и физике.
В 1918 г. Винсент при финансовой поддержке своей сестры Беатрис начал обучение в Иллинойсском университете по специальности «инженерная химия». Но вскоре предметом его интереса стала органическая химия, а затем биохимия (под влиянием Г.Б.Льюиса). В 1923 г. молодой человек получил степень бакалавра (руководитель – профессор К.С.Марвел), а в следующем году – степень магистра по химии, выполнив работу, посвященную синтезу одного из лекарственных соединений, обладающего местным анестезирующим и вазопрессорным (вызывающим повышение кровяного давления) действием.
Следует отметить, что годы обучения в университете для Винсента оказались нелегкими в финансовом плане. Параллельно с учебой ему пришлось много работать: сначала в качестве официанта, затем инструктора лейтенантов в кавалерийском резерве военных служб США. Обучая лейтенантов, он познакомился с английским майором, молодой девушкой по имени Зелла Зон Форд, которая по окончании университета стала женой Дю Виньо. Под влиянием своего будущего супруга Зелла посещала курсы математики и химии. Поэтому в первые годы замужества она работала преподавателем естественных наук. Впоследствии у супругов родились дочь Мэрилин и сын Винсент, ставший врачом.
Сразу по окончании университета Дю Виньо предпринял несколько попыток устроиться в какую-нибудь фармацевтическую компанию, ведь его научным интересом на всю жизнь стало, как он позднее называл, «изучение взаимосвязей между химической структурой органических соединений и их биологической активностью». Но в начале из этого ничего не получилось, и молодой ученый в течение полугода проработал в аналитической лаборатории компании «Du Pont». Затем при поддержке своего бывшего научного руководителя доктора Марвела ему удалось устроиться в филадельфийский военный госпиталь. В госпитале Дю Виньо наконец смог вести научные исследования в области клинической химии и одновременно начать преподавательскую работу в медицинской школе при Пенсильванском университете. Одновременно существовала возможность поступления в аспирантуру этого университета. Но весной 1925 г. молодой ученый неожиданно получил заманчивое предложение от профессора Дж.Р.Мурлина – заняться химией инсулина в только что открывшейся медицинской школе Рочестерского университета. Важную роль в этом сыграли рекомендации его бывших университетских наставников профессоров Льюиса и Марвела.
В 1927 г. ученый получил в Рочестерском университете докторскую степень по химии.
В 1928 г. он отправился в Германию, в Дрезден, в лабораторию профессора Макса Бергмана (ученика Эмиля Фишера), в то время уже признанного авторитета в области химии аминокислот и пептидов. У него Дю Виньо стажировался в области синтеза пептидов. Результаты исследований Дю Виньо понравились М.Бергману, и он предложил молодому стажеру стать его ассистентом. Но Дю Виньо, отклонив заманчивое предложение, направился на стажировку в Шотландию, в Эдинбургский университет, к профессору медицинской химии Джорджу Баргеру, а затем в клинику Лондонского университета к профессору Ч.Р.Харрингтону.
Через некоторое время пришлось подумать о возвращении на родину и о том, чтобы занять постоянную работу в каком-либо университете. Разослав письма с предложением своей кандидатуры в штат ряда университетов, Дю Виньо вскоре получил сразу несколько предложений. Он так вспоминал об этом поворотном этапе в своей жизни: «Я получил одно предложение
а) от профессора Мурлина из Рочестера, б) от профессора Абеля с фармацевтического факультета университета Джона Хопкинса,
в) место в Пенсильванском университете и, наконец, г) место в Нью-Йорке по клинической химии. В дополнение к этому пришло также предложение из Иллинойса от профессора Розе и Роджера Адамса, предлагавших место на факультете физиологической химии. В это время я уже твердо знал, что хочу быть биохимиком, при этом я хочу совмещать исследовательскую работу с преподавательской в области биохимии. Поэтому я принял предложение из Иллинойса, хотя в денежном эквиваленте оно не удовлетворяло моим запросам».
В Иллинойсе ученый проработал три года, и очень успешно. Но затем последовало предложение из медицинской школы университета Джорджа Вашингтона (штат Вашингтон), где Дю Виньо сразу же получил должность профессора и возглавил биохимический факультет. В новый университет за ним последовали также многие исследователи из его рабочей группы. Здесь ученый продолжил свои исследования инсулина и частично цистина. Важным направлением его деятельности в университета Джорджа Вашингтона были также начатые им исследования в области химии биотина.
В 1920-х – начале 1930-х гг. многие исследователи отмечали, что крысы, питавшиеся только яичным белком и не получавшие других белков, имели некоторые неврологические проблемы, кроме того, у них значительно ухудшалось состояние их кожных покровов. Сбалансированная диета разрешала эти проблемы. Витамин, которого так не хватало крысам в первой диете, назвали витамином Н. Известный биохимик Поль Джорджи (Paul Gyo..rgy) обратился к Дю Виньо с просьбой идентифицировать это вещество. В 1936 г. похожее вещество неожиданно было изолировано другими исследователями и идентифицировано как производное биотина (серосодержащего вещества, необходимого для деления клеток дрожжей). Последовательные эксперименты Дю Виньо в этом направлении показали, что выделяемый из ткани печени и молока биотин является коферментом. Он принимает участие в клеточном дыхании, причем идентичен по структуре и свойствам веществу, известному как витамин Н. Биотин сразу же был добавлен в список жизненно важных витаминов группы В. Как оказалось, в яйцах существует белок авидин, который плотно связывается с биотином и таким образом препятствует его усвоению живыми организмами.
В университете Джорджа Вашингтона важным направлением работы Дю Виньо было также создание новой учебной программы по биохимии для студентов-медиков.
С 1938 г. научная деятельность ученого переместилась в стены Корнеллского университета в Нью-Йорке, куда он был приглашен на должность профессора биохимии и декана биохимического факультета медицинского колледжа. Этот медицинский центр стал для него настоящим научным домом на оставшееся время академической карьеры. Сюда он взял с собой в штат пять сотрудников из университета Джорджа Вашингтона для продолжения исследований. В своих воспоминаниях ученый отмечал, что каждый раз, переезжая из одного университета в другой, он брал с собой сотрудников со старого места работы, по его образному выражению, «это как пересадка дерева – она должна быть обязательно с кусочком земли из старого места».
Именно в Корнеллском университете ученый осуществил свою наиболее признанную научной общественностью работу по определению структуры и синтезу окситоцина. Синтезированный им гормон был успешно испытан в клинических условиях на женщинах для стимуляции родов. Дальнейшие исследования в области биологически активных гормонов он проводил для установления возможностей замещения одних аминокислот на другие в ряде исследованных им структур. Параллельно он продолжал изучать биотин, метаболизм аминокислот и др.
Работа ученого в Корнеллском университете была отмечена самыми высокими наградами: медалью Николса Американского химического общества (1945), премией Бордена по медицинским наукам, премиями Осборна и Менделя Американского института питания (1953), медалью Чарльза Фредерика Чендлера Колумбийского университета (1956), медалью Уилларда Гиббса (1956) и Нобелевской премией.
С 1967 по 1975 г. ученый был профессором химии Корнеллского университета в Итаке. Дю Виньо также являлся членом советов Рокфеллерского института медицинских исследований, Национального института артрита и метаболических болезней и Исследовательского института здоровья в Нью-Йорке, президентом Гарвеевского общества, Американского общества биологической химии и председателем совета Федерации американских обществ экспериментальной биологии.

Полипептидные цепи, как известно, являются основой белков. Полипептидная цепь может быть представлена обобщенной структурой (83):

Концевое звено с группой NH 2 называют N-концом, другое концевое звено с группой СООН – С-концом. Полипептиды – частный случай полиамидов , связи CO-NH, соединяющие элементарные звенья полипептидной цепи, называют пептидными связями.

Мономеры для синтеза полипептидных цепей - α-аминокислоты; все они, кроме одной могут быть представлены формулами (84)-(84’); одна – пролин – формулами (85)-(85’):

В средах, близких к нейтральным, аминокислоты существуют почти целиком в форме биполярных ионов (84’) и (85’). Радикалы R I могут быть алифатическими, ароматическими, гетероциклическими, многие из них содержат разнообразные функциональные группы: ОН, NH 2 , COOH, SH и др. Для обозначения α-аминокислот в литературе используют три буквы (латинские) названия (чаще всего три первые, но не всегда), например Gly (глицин), Val (валин), Trp (триптофан).

Нематричные синтезы полипептидных цепей из α-аминокислот основаны на нескольких целенаправленных модификациях функциональных групп; эти модификации обеспечивают протекание на каждой стадии единственной реакции – взаимодействия карбоксильной функции предыдущего звена с аминогруппой последующего (если считать с N-конца). Необходимость такой модификации можно проиллюстрировать на простейшем примере синтеза димера – дипептида, для которого дан формальный синтез из мономеров:

Для препаративного синтеза дипептида (88) необходимо: А. Защитить группу NH 2 аминокислоты (86), чтобы избегнуть вариантов взаимодействия (86)-(86) и (87)-(86); Б. Активировать карбоксильную функцию аминокислоты (86), т.к. сама карбоксильная группа малоактивна в реакциях с нуклеофилами; В. Защитить группу СООН аминокислоты (87); это нужно для того, чтобы эта аминокислота не находилась в виде биполярного иона типа (84’); в такой форме аминогруппа не нуклеофильна и, следовательно, неактивна.

Поликонденсацию, ведущую к синтезу пептидной цепи с заданной первичной структурой, можно представить следующей схемой:

где Z – защитная группа для аминогруппы; Х – активирующая группа для первой карбоксильной функции; Y – защитная группа для второй карбоксильной функции.

После образования защищенного с двух концов дипептида (89) снимают защитную группу либо с его N-конца (1 ), либо с его С-конца (2 ) (совмещая снятие защиты с активированием). Далее освободившуюся группу NH 2 в дипептиде (90) или активированную карбоксильную функцию в дипептиде (91) используют для проведения следующей стадии – реакции с очередным модифицированным мономером с образованием трипептида; эта схема повторяется. В варианте (1 ) пептидная цепь наращивается с С-конца, в варианте (2 ) - с N-конца. В реакции можно вводить не обязательно модифицированные мономеры, но и «сшивать» пептиды друг с другом.

Приведенная здесь схема упрощенная - реально приходится также защищать некоторые функциональные группы, находящиеся в боковых группах R i , например, группу NH 2 в боковом радикале лизина.

А. Защитные группы. Основные требования к защитным группам: а. Они должны полностью предотвращать участие защищаемой группы в проводимых реакциях (блокировать защищаемую группу); б. После проведения реакции они должны достаточно легко удаляться с регенерацией защищаемой группы и без затрагивания остальных фрагментов продукта реакции (в частности, при синтезе пептидов – без разрыва пептидных связей).

1. NH 2 -Защитные группы (группы Z). Сейчас известно большое число вариантов эффективной защиты группы NH 2 ; используются несколько типов защитных групп. Здесь ограничимся наиболее широко применяемым типом – уретановыми защитными группами. Для их постановки соединение, содержащее группу NH 2 , вводят в реакцию с производным моноэфира угольной кислоты, например, хлорангидридом (эфиром хлоругольной кислоты, хлоркарбонатом):

Кроме хлорангидридов, можно использовать азиды или ангидриды. Группировка RO-CO-NH- называется уретановой , откуда и название защиты. Постановка уретановой защиты – аналог ацилирования аминогруппы; обычное ацилирование производными карбоновых кислот неприменимо, т.к. ацильные защитные группы плохо удаляются; напротив, уретановая защита снимается легко, в мягких условиях, причем в различных, в зависимости от характера радикала R. Приведем три примера:

а. R=C 6 H 5 CH 2 ; защитная группа называется бензилоксикарбонильной (карбобензилокси-защита, Z-защита); это исторически первый пример уретановой защиты группы NH 2 (М. Бергман, Л. Зервас, 1932 г.). После проведения необходимой реакции бензилоксикарбонильная защита легко снимается мягким каталитическим гидрированием (точнее – гидрогенолизом):

Продукты гидрогенолиза защитной группы – толуол и СО 2 – легко удаляются из реакционной среды.

б. R = (CH 3) 3 C; защитная группа – трет- бутилоксикарбонильная, Вос-защита (B utyl- o xyc arbonyl); эта защита легко удаляется при мягкой кислотной обработке, например, при действии трифторуксусной кислоты:

Здесь оба продукта, образующиеся при снятии защиты, газообразны, что еще более облегчает их удаление.

В. R=CH 3 SO 2 CH 2 CH 2 – метилсульфонилэтилоксикарбонильная защита (Msc-защита); эта защита снимается NaOH в мягких условиях (рН 10-12, 0 о С).

Различие в условиях снятия приведенных защит позволяет по-разному защищать α-NH 2 -группу аминокислоты и NH 2 -группу в боковом радикале лизина. Тогда одну защиту (α-NH 2 -группы) можно снять, а другую (“лизиновую”) – оставить (защиту боковых групп обычно снимают после окончания формирования полипептидной цепи).

Известно еще несколько вариантов уретановой защиты, а также несколько иных типов защиты группы NH 2 - формильная, фталильная, трифторацетильная; сведения об этих способах можно найти в литературе по биоорганической химии.

2. СООН -Защитные группы. Чаще всего используют образование бензиловых или трет- бутиловых эфиров:

Б
ензиловые эфиры обычно получают прямой этерификацией,трет- бутиловые –присоединением изобутилена при кислотном катализе (этерификация трет- бутанолом пространственно затруднена). Защитные группы снимаются в мягких условиях, сходными с условиями снятия соответствующих уретановых защитных групп.

Иногда для защиты группы СООН используют простое солеобразование:

СООН → -СОО‾.

Б. Активирующие группы (группы Х). Реакции образования пептидной связи относятся к реакциям ацилирования; главной стадией таких реакций является нуклеофильное присоединение (в данном случае группы NH 2) к связи С=О карбоксильной функции. Как уже упоминалось, группа СООН довольно малоактивна в реакциях ацилирования, т.к. неподеленная пара электронов атома кислорода группы ОН в значительной степени компенсирует дефицит электронной плотности на карбонильном атоме углерода:

Активирующая группа (Х) должна быть электроноакцепторной, чтобы сделать атом углерода карбоксильной группы более электрофильным и облегчить атаку аминогруппы для образования пептидной связи.

Известно достаточно много производных карбоновых кислот, содержащих электроноакцепторные группы, но не все они могут быть использованы; например, непригодна самая очевидная активирующая группа – С1 (т.е. не используются хлорангидриды), т.к. в этом случае не сохраняется конфигурация аминокислоты (происходит рацемизация). Ниже приведены широко используемые варианты активации.

А. Образование активированных эфиров (Х = OR). В этом варианте получают ариловые сложные эфиры кислот, которые содержат в ароматическом радикале электроноакцепторные группы (например, пара -нитрофенильную или пентафторфенильную):

Б. Образование азидов кислот (Х = N 3):

Азиды кислот получают через сложные эфиры и гидразиды; азидная группа обладает сильным электроноакцепторным действием

В. Образование смешанных ангидридов. Обычно используют смешанные эфиры α-аминокислот и производных угольной (92) или фосфорной (93) кислот:

Получение смешанных ангидридов с производными угольной кислоты удобно тем, что при последующем образовании пептидной связи активирующая группа удаляется в виде спирта и СО 2 , что препаративно удобно:

Образование смешанных ангидридов α-аминокислот с производным фосфорной кислоты (аминоациладенилатов) – важная реакция, предшествующая процессу биосинтеза белков - трансляции.

Г. Использование карбодиимидов Применение карбодиимидов R-N=C=N-R 1 позволяет провести активацию карбоксильной группы и образование пептидной связи в одну стадию , без выделения активированной аминокислоты (или пептида). Если, допустим, прибавить карбодиимид к смеси NH 2 -защищенной первой аминокислоты и СООН-защищенной второй аминокислоты, то протекают две последовательные реакции:

Вначале карбодиимид реагирует с карбоксильной группой первой аминокислоты с образованием ее активированного производного (94) (напоминающего смешанный ангидрид); далее это производное реагирует с группойNH 2 второй аминокислоты, причем образуется пептид, а активирующая группа удаляется в виде симм. дизамещенной мочевины.

Одним из наиболее широко применяемых реагентов этого типа является дициклогексилкарбодиимид (DCC) (R = R 1 =циклогексил); в ходе пептидного синтеза из него образуется симм. дициклогексилмочевина, нерастворимая в большинстве органических растворителей и легко отделяемая фильтрованием. Также широко используются водорастворимые карбодиимиды [например, R = Et, R 1 = (CH 2) 3 N(CH 3) 2 ].

Карбодиимиды используются не только в пептидном синтезе, но и при синтезе in vitro полинуклеотидов (см. ниже).

Д. Использование N -карбоксиангидридов. Этот вариант позволяет совместить защиту аминогруппы и активацию карбоксильной функции. N-Карбоксиангидриды (ангидриды Лейхса) образуются при взаимодействии α-аминокислот с фосгеном:

П
ри этом совмещаетсязащита группы NH 2 по уретановому типу и активация карбоксильной группы по типу образования смешанного ангидрида с производным угольной кислоты. Образование полипептидов при использовании N-карбоксиангидридов идет следующим образом:

Взаимодействие N-карбоксиангидрида с солью второй аминокислоты при точно установленном значении рН 10,2 приводит к образованию пептидной связи и получению соли производного дипептида (95), содержащей фрагмент соли карбаминовой кислоты. При слабом подкислении (рН 5) образующийся фрагмент карбаминовой кислоты немедленно декарбоксилируется (производные карбаминовой кислоты со свободной группой СООН весьма легко декарбоксилируются), т.е. происходит снятие защиты с N-конца дипептида. Далее полученный дипептид (96) вводят в реакцию с очередным N-карбоксиангидридом при рН 10,2 и т.д.

Этот вариант, в принципе, позволяет сократить число стадий пептидного синтеза, но он требует точного соблюдения условий, в частности, поддержания точного значения рН. В других условиях может произойти, в частности, образование гомополимеров гомополипептидов из N-карбоксиангидридов по схеме:

Такие гомополипептиды могут служить моделями (хотя и довольно приближенными) природных полипептидов, поэтому их получение имело практическое применение.

Пептидный синтез на полимерных носителях. Как видно из изложенного выше, синтез полипептидных цепей сколько-нибудь значительной длины включает большое число отдельно проводимых стадий десятки, а то и сотни). Это весьма трудоёмкий процесс; кроме того, требуется высочайшая эффективность каждой стадии, сведение к минимуму потерь образующихся пептидов. Эффективность во многом определяется сравнительной растворимостью пептидов и других продуктов реакций, которые нужно отделить от пептида: если растворимость разная, разделение и очистка упрощаются.

Методика пептидного синтеза на полимерном носителе значительно упрощает процедуру синтеза и, в частности, кардинально решает проблему растворимости, что позволяет повысить эффективность синтеза. Идея синтеза состоит в том, что формируемая полипептидная цепь с самого начала синтеза связана с макромолекулой полимера-носителя и лишь в конце синтеза отделяется от нее.

Наибольшее распространение имеет использование нерастворимого полимера-носителя (твердофазный пептидный синтез ); эта методика впервые была предложена Р. Меррифилдом в 1963 г. В качестве полимера-носителя обычно используется частично хлорметилированный сополимер стирола с небольшим количеством 1,4-дивинилбензола; это пространственный полимер с редкими поперечными сшивками между цепями и определенным количеством групп СН 2 С1:

П
ептидный синтез на носителе протекает по схеме:

Вначале первую аминокислоту (NH 2 -защищенную, чаще всего Вос-защитой) «прикрепляют» к полимеру-носителю за счет взаимодействия хлорметильной группы с карбоксильной группой аминокислоты (точнее карбоксилатной, в которую она превращается в присутствии триэтиламина); аминокислота прикрепляется к полимеру, образуя с ним сложный эфир типа бензилового (97). Далее снимают защиту с группы NH 2 , добавляют вторую NH 2 -защищенную аминокислоту (обычно в присутствии карбодиимида); образуется прикрепленный к полимеру N-защищенный дипептид (98). Далее цикл повторяют: снимают защиту Z, добавляют третью аминокислоту и т.д.; происходит наращивание пептидной цепи с С-конца по схеме линейного синтеза.

Растущая пептидная цепь с самого начала (с первого звена) нерастворима , т.к. ковалентно связана с пространственным полимером, который по определению нерастворим [в то же время пространственная сетка редкая ; поэтому полимер может набухать в раст-ворителе, и реагенты имеют свободный доступ к N-концу растущей цепи]. Поэтому все побочные продукты (прежде всего избыток реагента) легко удаляются промывкой, экстракцией или фильтрованием полимера [реагенты на каждой стадии берут в большом избытке, чтобы обеспечить полноту протекания каждой реакции]. Это существенно повышает эффективность синтеза.

По окончании формирования требуемой пептидной цепи ее отсоединяют от полимера-носителя (например, действием смеси HBr-CF 3 COOH в мягких условиях); одновременно снимается защита с N-конца (если это Вос-защита):

Твердофазный синтез пептидов автоматизирован и осуществляется на специальных устройствах – синтезаторах. Наибольшие успехи достигнуты при синтезе олигопептидов (порядка 8-15 звеньев); однако этим способом можно получать и высокомолекулярные полипептиды; в частности, одним из первых значительных достижений твердофазного синтеза был синтез фермента рибонуклеазы, содержащей 124 звена.

Одной из проблем, с которой сталкивается твердофазный синтез, является уменьшение степени набухания полимера по мере роста пептидной цепи; это затрудняет доступ к группам NH 2 растущей полимерной цепи. В этом случае реакция постановки очередного звена может пройти неполностью, частично образуется пептид с «пропуском» звена, который, как правило, уже не обладает нужной биологической активностью (пропуск хотя бы одного звена в полипептидной цепи меняет ее пространственную организацию, а, следовательно, и биологическую активность). Поэтому такие «ложные» пептиды необходимо отделять от «правильных», что достаточно трудно.

Проблема, по крайней мере, частично, решается при использовании в качестве носителей растворимых полимеров; в качестве таких носителей можно использовать линейные полимеры – полистирол, полиэтиленгликоли или полиуретаны. В этом варианте синтез ведется в растворе , где доступ реагентов к растущей цепи облегчен по сравнению с твердофазным синтезом. Затем полимер с «привязанной» к нему растущей пептидной цепью осаждают «плохим» растворителем, отфильтровывают от остальных продуктов, опять растворяют в «хорошем» растворителе и продолжают синтез. Этот вариант, предложенный М. М. Шемякиным, называют жидкофазным пептидным синтезом ; он используется для синтеза олигопептидов; при синтезе высокомолекулярных полипептидов меняется растворимость полимера, что создает ряд проблем.

Нематричный лабораторный синтез пептидов (во всех вариантах) используется в настоящее время преимущественно для синтеза природных олигопептидов; синтез природных белков более эффективно осуществляется биотехнологически – путем встраивания генов, кодирующих белки, в рекомбинантные ДНК, с последующими клонированием и экспрессией этих генов.

1. Введение…………………………………………………………………………3

2. Что такое пептиды?..........................................................................................4

2.1. Строение пептидов……………………………………………………….5

2.2. Синтез пептидов………………………………………………………….7

3. Твердофазный синтез пептидов……………………………………………10

3.1. Метод Мерринфилда……………………………………………………10

3.2. Твердая подложка……………………………………………………….14

3.3. Выбор подложки………………………………………………………...14

3.4. Линкеры………………………………………………………………….16

4. Первый синтез природного гормона – окситоцина……………………….22

5. Синтез инсулина в клетке…………………………………………………..30

6. Заключение…………………………………………………………………..34

7. Литература…………………………………………………………………...35

Введение


В органической химии нет ни одной реакции, обеспечивающей на практике количественные выходы целевых продуктов в любом случае. Единственное исключение составляет, по-видимому, полное сжигание органических веществ в кислороде при высокой температуре до СО 2 и Н 2 О. Поэтому очистка целевого продукта является сложной и трудоемкой задачей. Например, 100%-ная очистка продуктов пептидного синтеза является трудноразрешимой проблемой. Действительно, первый полный синтез пептида, гормона окситоцина (1953 г), содержащего всего 8 аминокислотных остатков, рассматривался как выдающееся достижение, принесшее его автору, В. дю Виньо, Нобелевскую премию 1955 г. Однако уже в следующие двадцать лет синтезы полипептидов подобной сложности превратились в рутину, так что в настоящее время синтез полипептидов, состоящих из 100 и более аминокислотных остатков, уже не рассматривается как непреодолимо трудная задача.

Цель работы: разобрать и объяснить: «Что вызвало столь драматические изменения в области синтеза полипептидов?»

Что же такое пептиды?

Пептиды- природные или синтетические соединения, молекулы которых построены из остатков альфа-аминокислот, соединенных между собой пептидными (амидными) связями C(O) NH. Могут содержать в молекуле также неаминокислотную компоненту (напр., остаток углевода). По числу аминокислотных остатков, входящих в молекулы пептидов, различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до 10 аминокислотных остатков, называются олигопептидами, содержащие более 10 аминокислотных остатков полипептидами Природные полипептиды с молекулярной массой более 6 тыс. называются белками.

Впервые пептиды были выделены из ферментативных гидролизатов белков. Термин "пептиды" предложен Э. Фишером. Первый синтетический пептид получил T. Курциус в 1881г. Э. Фишер к 1905 разработал первый общий метод синтеза пептидов и синтезировал ряд олигопептидов различного строения. Существующий вклад в развитие химии пептидов внесли ученики Э. Фишера Э. Абдергальден, Г. Лейке и M. Бергман. В 1932 г. M Бергман и Л. Зервас использовали в синтезе пептидов бензилоксикарбонильную группу (карбобензоксигруппу) для защиты альфа-аминогрупп аминокислот, что ознаменовало новый этап в развитии синтеза пептидов. Полученные N-защищенные аминокислоты (N-карбобензоксиаминокислоты) широко использовали для получения различных пептидов, которые успешно применяли для изучения ряда ключевых проблем химии и биохимии этих веществ, например, для исследования субстратной специфичности протеолитических ферментов. С применением N-карбобензоксиаминокислот были впервые синтезированы природные пептиды(глутатион, карнозин и др.). Важное достижение в этой области разработанный в начале 50-х гг. P. Воганом и др. синтез пептидов методом смешанных ангидридов.

В 1953 В. Дю Виньо синтезировал первый пептидный гормон -окситоцин. На основе разработанной P. Меррифилдом в 1963 концепции твердофазного пептидного синтеза были созданы автоматические синтезаторы пептидов. Получили интенсивное развитие методы контролируемого ферментативного синтеза пептидов. Использование новых методов позволило осуществить синтез гормона инсулина и др.

Успехи синтетической химии пептидов были подготовлены достижениями в области разработки таких методов разделения, очистки и анализа пептидов, как ионообменная хроматография, электрофорез на различных носителях, гель-фильтрация, высокоэффективная жидкостная хроматография (ВЭЖХ), иммуно-химический анализ и др. Получили большое развитие также методы анализа концевых групп и методы ступенчатого расщепления пептидов. Были, в частности, созданы автоматические аминокислотные анализаторы и автоматические приборы для определения первичной структуры пептидов-так называемых секвенаторы.

Строение пептидов

Пептидная связь имеет свойства частично двойной связи. Это проявляется в уменьшении длины этой связи (0,132 нм) по сравнению с длиной простой связи C N (0,147 нм). Частично двоесвязный характер пептидной связи делает невозможным свободное вращение заместителей вокруг нее, поэтому пептидная группировка является плоской и имеет обычно транс-конфигурацию (ф-ла I). Tаким образом, остов пептидной цепи представляет собой ряд жестких плоскостей с подвижным ("шарнирным") сочленением в месте, где расположены асимметричные атомы С (в ф-ле I обозначены звездочкой).

В растворах пептидов наблюдается предпочтительное образование определенных конформеров. С удлинением цепи более выраженную устойчивость приобретают (аналогично белкам) упорядоченные элементы вторичной структуры. Образование вторичной структуры особенно характерно для регулярных пептидов, в частности для полиаминокислот.

Свойства

Олигопептиды по свойствам близки к аминокислотам, полипептиды подобны белкам. Олигопептиды представляют собой, как правило, кристаллические вещества, разлагающиеся при нагревании до 200 300 0 C. Они хорошо растворимы в воде, разбавленных кислотах и щелочах, почти не растворимы в органических растворителях. Исключения составляют олигопептиды, построенные из остатков гидрофобных аминокислот.

Олигопептиды обладают амфотерными свойствами и, в зависимости от кислотности среды, могут существовать в форме катионов, анионов или цвиттер-ионов. Основные полосы поглощения в ИК спектре для группы NH 3300 и 3080 см -1 , для группы C=O 1660 см -1 . В УФ спектре полоса поглощения пептидной группы находится в области 180-230 нм. Изоэлектрическая точка (рI) пептидов колеблется в широких пределах и зависит от состава аминокислотных остатков в молекуле. Величины рК а пептидов составляют для а-СООН ок. 3, для -H 2 ок. 8.

Химические свойства олигопептидов определяются содержащимися в них функциональными группами, а также особенностями пептидной связи. Их химические превращения в значительной мере аналогичны соответствующим реакциям аминокислот. Они дают положительную биуретовую реакцию и нингидриновую реакцию. Дипептиды и их производные (особенно эфиры) легко циклизуются, превращаясь в дикетопиперазины. Под действием 5,7 нормальной соляной кислоты пептиды гидролизуются до аминокислот в течение 24ч при 105 0 C.

Синтез пептидов

В пептидном синтезе используются известные из органической химии реакции получения амидов и специально разработанные методы для синтеза пептидов. Для успешного осуществления этих синтезов необходимо активировать карбоксильную группу, т.е. увеличить электрофильность карбонильного углерода. Это достигается путем химической модификации карбоксильной группы аминокислот. Тип такой модификации обычно определяет название метода пептидного синтеза.

1. Хлорангидридный метод.

В основе метода лежит реакция получения амидов взаимодействием хлорангидридов кислот с соответствующими аминами. Именно этим способом были получены первые пептиды. В настоящее время этот метод применяется крайне редко, поскольку он сопровождается образованием побочных продуктов и рацемизацией пептидов.

2. Азидный метод

Исходным веществом в данном способе чаще всего является этиловый эфир N-защищенной аминокислоты, из которой получают гидразид, последний превращают с помощью нитрита натрия в присутствии соляной кислоты в азид кислоты. В реакции обычно применяют гидразин, у которого один из азотов заблокирован защитной группой (Z-карбобензокси- или карботретбутилоксигруппа), что позволяет избежать образования побочных дигидразидов. Азиды при взаимодействии с С-защищенными аминокислотами в мягких условиях образуют пептиды.

Рацемизация в этом методе сведена к минимуму, однако могут протекать побочные реакции, а именно: азиды могут перегруппировываться в изоцианаты, которые в свою очередь при взаимодействии со спиртом, используемым в качестве растворителя, образуют уретаны.

3. Смешанные ангидриды

Широкое применение в пептидном синтезе нашли смешанные ангидриды аминокислот с производными угольной кислоты, получаемые, например, с помощью изобутилхлоркарбоната:

Реакцию в этом синтезе проводят при низкой температуре (-10..-20 С), достаточно быстро, что значительно снижает возможность образования побочных продуктов и рацемизации. Быстрый ступенчатый синтез пептидов с использованием смешанных ангидридов носит название REMA-синтез. Методы образования с использованием смешанных ангидридов широко применяются в твердофазном синтезе пептидов.

Таким образом, проведение пептидного синтеза требует учета и жесткого соблюдения некоторых факторов. Так, с целью снижения образования побочных продуктов и рацемизации, рекомендуются следующие типовые условия проведения реакции образования пептидной связи:

1)процесс необходимо проводить при низких температурах, время реакции должно быть минимальным;

2)реакционная масса должна иметь рН, близкую к нейтральной;

3) в качестве кислотосвязывающих реагентов используют органические основания, как пиперидин, морфолин и т.д;

4) проведение реакции желательно в безводных средах.

Твердофазный синтез

Твердофазный синтез - методический подход к синтезу олигомеров (полимеров) с использованием твердого нерастворимого носителя, представляющего собой органический или неорганический полимер.

В начале 60-х годов был предложен новый подход к решению проблем выделения и очистки, возникающих в пептидном синтезе. Позже автор открытия этого подхода, Р.Б. Меррифилд, в своей Нобелевской лекции рассказал, как это произошло: “Однажды у меня возникла мысль о том, как может быть достигнута цель более эффективного синтеза пептидов. План состоял в том, чтобы собирать пептидную цепь постадийно, причем во время синтеза цепь должна быть одним концом привязана к твердому носителю”. В результате выделение и очистка промежуточных и целевых производных пептидов сводились просто к фильтрованию и тщательной промывке твердого полимера для удаления всех избыточных реагентов и побочных продуктов, остающихся в растворе. Такая механическая операция может быть выполнена количественно, легко стандартизируется и может быть даже автоматизирована. Рассмотрим эту процедуру более подробно.

Методе Меррифилда

Полимерный носитель в методе Меррифилда - это гранулированный сшитый полистирол, содержащий хлорметильные группы в бензольных ядрах. Эти группы превращают полимер в функциональный аналог бензилхлорида и сообщают ему способность легко образовывать сложноэфирные связи при реакции с карбоксилат-анионами. Конденсация такой смолы с N-защищенными аминокислотами ведет к образованию соответствующих бензиловых эфиров. Удаление N-защиты из дает С-защищенное производное первой аминокислоты, ковалентно связанное с полимером. Аминоацилирование освобожденной аминогруппы N-защищенным производным второй аминокислоты с последующим удалением N-защиты приводит к аналогичному производному дипептида также привязанному к полимеру:

Такой двустадийный цикл (удаление защиты-аминоацилирование) может быть, в принципе, повторен столько раз, сколько требуется для наращивания полипептидной цепи заданной длины.

Использование твердого носителя само по себе еще не может упростить решение проблемы отделения n-звенного пептида от его (n-1)-членного предшественника, поскольку оба они привязаны к полимеру. Однако этот подход позволяет безопасно использовать большие избытки любого реагента, необходимые для достижения практически 100%-ной конверсии (n-1)-членного предшественника в n-членный пептид, так как привязанные к носителю целевые продукты на каждой стадии могут быть легко и количественно освобождены от избыточных реагентов (что было бы весьма проблематично при работе в гомогенных системах).

Сразу же стало понятно, что возможность очистки продукта после каждой реакции путем простого фильтрования и промывки, и то, что все реакции можно проводить в одном реакционном сосуде, составляют идеальные предпосылки для механизации и автоматизации процесса. Действительно, всего три года потребовалось для разработки автоматической процедуры и аппаратуры, позволяющих выполнять программируемый синтез полипептидов с заданной последовательностью аминокислотных остатков. Первоначально и сама аппаратура (емкости, реакционные сосуды, шланги), и система управления были очень примитивны. Тем не менее, мощь и эффективность общей стратегии были убедительно продемонстрированы рядом пептидных синтезов, выполненных на этом оборудовании. Так, например, с помощью такой полуавтоматической процедуры был успешно выполнен синтез природного гормона инсулина, построенного из двух полипептидных цепей (состоящих из 30 и 21 аминокислотных остатков), связанных дисульфидным мостиком.

Твердофазная техника приводила к существенной экономии труда и времени, необходимых для пептидного синтеза. Так, например, ценой значительных усилий Хиршмен с 22 сотрудниками завершили выдающийся синтез фермента рибонуклеазы (124 аминокислотных остатка) с помощью традиционных жидкофазных методов. Почти одновременно тот же белок был получен путем автоматизированного твердофазного синтеза. Во втором случае синтез, включающий 369 химических реакций и 11 931 операцию, был выполнен двумя участниками (Гатте и Меррифилд) всего за несколько месяцев (в среднем до шести аминокислотных остатков в день присоединялись к растущей полипептидной цепи). Последующие усовершенствования позволили построить полностью автоматический синтезатор.

Метод Меррифильда и послужил основой для нового направления органического синтеза – комбинаторной химии .

Хотя иногда комбинаторные эксперименты проводятся в растворах, но в основном, они осуществляются с использованием твердофазной техники – реакции протекают с использованием твердых подложек в виде сферических гранул полимерных смол. Это дает ряд преимуществ:

1. Различные исходные соединения могут быть связаны с отдельными гранулами. Затем эти гранулы смешиваются и, таким образом, все исходные соединения могут взаимодействовать с реагентом в одном эксперименте. В результате продукты реакции образуются на отдельных гранулах. В большинстве случаев, смешивание исходных в традиционной жидкой химии приводит обычно к неудачам – полимеризации или осмолению продуктов. Эксперименты на твердой подложке исключают эти эффекты.

2. Поскольку исходные материалы и продукты связаны с твердой подложной, то избыток реагентов и не связанных с подложкой продуктов можно легко отмыть от полимерной твердой подложки.

3. Можно использовать большие избытки реагентов, для того чтобы провести реакцию до конца (больше, чем 99%), поскольку эти избытки легко отделяются.

4. В случае использования низких объемов загрузок (менее 0,8 ммоль на грамм подложки) можно исключить нежелательные побочные реакции.

5. Интермедиаты в реакционной смеси связаны с гранулами и их нет необходимости очищать.

6. Индивидуальные гранулы полимера могут быть разделены в конце эксперимента и таким образом получаются индивидуальные продукты.

7. Полимерная подложка может быть регенерирована в тех случаях, когда подобраны условия разрыва и выбраны соответствующие якорные группы – линкеры.

8. Возможна автоматизация твердофазного синтеза.

Необходимыми условиями проведения твердофазного синтеза, кроме наличия нерастворимой полимерной подложки, инертной в реакционных условиях, являются:

1. Присутствие якоря или линкера – химической функции, обеспечивающей связь подложки с наносимым соединением. Он ковалентно связан со смолой. Якорь также должен являться реакционно-способной функциональной группой для того, чтобы субстраты могли взаимодействовать с ним.

2. Связь, образующаяся между субстратом и линкером должна быть стабильна в условиях реакции.

3. Должны существовать способы разрыва связи продукта или интермедиата с линкером.

Рассмотрим подробнее отдельные компоненты твердофазного метода синтеза: твердая подложка и линкер.

Твердая подложка

Как сказано выше, первыми типами смол, которые использовал Меррифильд, были полистирольные гранулы, где стирол был сшит с 1% дивинилбензола. Гранулы были модифицированы хлорметильными группами (линкер), с которыми аминокислоты могли быть соединены через эфирные группы. Эти эфирные связи стабильны в реакционных условиях, которые применялись для пептидного синтеза.

Одним из недостатком полистирольных гранул является то факт, что они гидрофобны, тогда как растущая пептидная цепь гидрофильна. В результате, иногда растущая пептидная цепь не сольватируется и сворачивается за счет образования внутримолекулярных водородных связей. Такая форма затрудняет доступ новых аминокислот к концу растущей цепи. Поэтому часто используются более полярные твердые подложки, такие как полиамидные смолы. Такие смолы более пригодны для не пептидного комбинаторного синтеза.

Выбор твердой подложки

Синтетические подходы к получению библиотек часто определяются природой выбранной полимерной подложки. Гранулированный полимер должен соответствовать некоторым критериям, в зависимости от стратегий синтеза и скрининга.

Для получаемых библиотек имеют важное значение размер и однородность гранул, а также устойчивость смолы к формированию кластеров. Способность смолы к набуханию в органической и водной среде особенно важна, когда используются обязательные пробы для скрининга структуры, находящейся еще на грануле.

Основные типы полимерных смол для комбинаторного синтеза используемые в настоящее время:

1. Полистирол, сшитый с 0,5-2% дивинилбензола (StratoSpheres)

2. Полиэтиленгликоль, привитый на сшитом сополимере полистирол- 1% дивинилбензол (TentaGel, AgroGel, NovaGel)

3. Полиэтиленгликоль, привитый на 1% сшитый полистирол (PEG-PS)

4. Полистирольная макропористая смола с высокой степью сшивки (AgroPore, TentaPore)

5. Сополимер бис-2-акриламидполиэтиленгликоль-моноакриламидо-полиэтиленгликоль (PEGA)

6. Диметилакриламид нанесенный на макропористую матрицу кизельгура (Pepsyn K)

7. Диметилакриламид нанесенный на макропористую матрицу – сшитый 50% полистирол-дивинилбензол (Polyhipe)

Хотя классические гранулированные смолы больше подходят для комбинаторного синтеза библиотек соединений, иногда используются альтернативные носители.

Например, целлюлоза является хорошей подложкой для многократного “капельного синтеза” пептидов или для синтеза библиотек на бумаге. “Капельные” синтезы проводят путем капания растворов защищенных аминокислот на модифицированную бумагу в присутствии активирующего реагента. Здесь реакционным сосудом является непосредственно носитель и нет необходимости манипуляций, характерных для жидких сред в течение синтеза (обычно встряхивание в случае твердофазного синтеза). Реакция идет за счет диффузии жидкости в носителе. Этот принцип внутреннего объемного синтеза был проверен при использовании полимерных носителей на синтезаторе, использующем центрифугирование для устранение жидкости. Было найдено, что капельная техника сопоставима с классическим функционированием твердой фазы в пептидном синтезе.

Было также найдено, что хлопок (вата), как самая чистая форма целлюлозы может служить удобной подложкой твердой фазы, особенно для множественного синтеза или генерирования библиотеки.

Хотя гранулы и являются наиболее распространенной формой твердой положки, но и другие виды (например, иглы) могут также использоваться для комбинаторного синтеза. Модифицированная стеклянная поверхность также может быть применена для олигонуклеотидного синтеза.

Линкеры

Линкер – это молекулярный фрагмент, ковалентно связанный с твердой подложкой. Он содержит реакционноспособные функциональные группы, с которыми взаимодействует первый реагент и который в результате становится связанным со смолой. Образующаяся связь должна быть стабильной в реакционных условиях, но легко разрываться на конечной стадии синтеза.

Различные линкеры используются в зависимости от того, какая функциональная группа присутствует в субстрате и от того, какая функциональная группа должна быть сформирована в конце процедуры.

В практике комбинаторного синтеза чаще всего используются следующие линкеры:

  • Хлорметильный (-CH 2 Cl),
  • Гидроксильный (-OH),
  • Аминный (-NH 2),
  • Альдегидный (-CHO),
  • Силильный (-OSiR 3).
Тип линкера Тип смолы Что присоединяет Что синтезирует Чем осуществляется разрыв
Галогенметил Карбоновые кислоты, спирты, фенолы, тиолы, амины Кислоты, спирты, сложные эфиры, тиоэфиры TFMSA, H 2 /Pd, i-Bu 2 AlH, MeONa, HF
Галогенметил Алкил и ариламины Анилиды и сульфамиды CF 3 COOH, SOCl 2 /CF 3 COOH
Галогенметил Спирты, кислоты, фенолы, тиолы, амины Спирты, кислоты, тиолы, амины, сложные эфиры 1-5% CF 3 COOH, 30% гексафторизопропанол
Гидроксил Спирты, кислоты Спирты, кислоты, амиды CF 3 COOH, амин/AlCl 3 , i-Bu 2 AlH
Гидроксил Спирты, кислоты Спирты, кислоты 5% CF 3 COOH, 10% AcOH
Гидроксил Кислоты Кислоты Свет с длиной волны 365 нм. Линкер стабилен к CF 3 COOH и пиперидину
Гидроксил Кислоты Амиды кислот, спирты, сложные эфиры, гидразиды Нуклеофилы (NaOH,NH 3 /MeOH, NaBH 4 /EtOH, MeOH/CF 3 COOH, NH 2 NH 2 /DMF
Гидроксил Защищенные пептиды, ки-слоты Циклические пепти-ды, мочевины 25% CF 3 COOH, гидразиды
Гидроксил Линкер Ринкера Спирты, кисло-ты, фенолы Спирты, кислоты, фенолы 1-5% CF 3 COOH
Амино Кислоты Карбоксамиды 95% CF 3 COOH
Амино Кислоты Защищенные амиды 1% CF 3 COOH
Амино Кислоты Альдегиды и кетоны LiAlH 4 и реактивы Гриньяра
Амино Карбоновые кислоты Амиды или карбоновые кислоты Активация сульфонамида диазометаном или бромацетонитрилом с последующей атакой нуклеофилом амина или гидроксида
Альдегид Первичные или вторичные спирты Спирты 95% CF 3 COOH/H 2 O или CF 3 COOH/CH 2 Cl 2 /EtOH
Альдегид Амины Карбоксамиды, сульфонамиды CF 3 COOH

Смолы Ванга могут быть использованы в пептидном синтезе посредством N-защищенной аминокислоты, связанной с линкером эфирной связью. Такая эфирная связь устойчива к сочетанию и стадии снятия защиты, но может быть разрушена трифторуксусной кислотой для снятия конечного пептида с гранулы смолы.

Субстраты с карбоксильной группой могут быть связаны со смолой Ринка через амидную связь. Как только процедура заканчивается, взаимодействие с трифторуксусной кислотой освобождает продукт с первичной амидной группой.

Первичные и вторичные спирты могут быть связаны со смолой, модифицированной дигидропираном. Связывание спирта происходит в присутствии 4-толуолсульфоната в дихлорметане. Снятие продукта происходит с использованием трифторуксусной кислоты.

Первый синтез пептидного гормона – окситоцина

В 1953 г. американский ученый Винсент Дю Виньо совместно с сотрудниками выяснил строение окситоцина – циклического полипептида. Cреди известных природных соединений подобные циклические структуры ранее не встречались. В следующем году ученый впервые осуществил синтез этого вещества. Это был первый случай синтеза полипептидного гормона в условиях in vitro.

Дю Виньо известен в научном мире своими исследованиями на стыке химии и медицины. В середине 1920-х гг. предметом его научного интереса было изучение функции серы в инсулине – гормоне поджелудочной железы, регулирующем процесс углеводного обмена и поддержания нормального уровня сахара (глюкозы) в крови. Интерес молодого человека к химии инсулина зародился, по его воспоминаниям, после одной из лекций, прочитанных профессором Уильямом К.Розе сразу же после открытия этого вещества Фредериком Г.Бантингом и Джоном Дж.Р.Маклеодом. Поэтому, когда после окончания университета Джон Р.Мурлин из Рочестерского университета предложил ему заняться изучением химической природы инсулина, молодой ученый посчитал это предначертанным судьбой предложением. «Шанс поработать над химией инсулина перечеркнул все остальные мои научные ожидания, – отмечал впоследствии Дю Виньо, – поэтому я сразу же принял предложение профессора Мурлина».
За время работы в Рочестерском университете Дю Виньо удалось высказать первые предположения о химическом составе инсулина, которые в значительной степени были отражены в его диссертации «Сера инсулина», защищенной в 1927 г. Согласно воззрениям Дю Виньо инсулин являлся одним из производных аминокислоты цистина. Он идентифицировал инсулин как серосодержащее соединение, в котором серные фрагменты представляют собой дисульфидные мостики. Он высказал также соображения о пептидной природе инсулина.
Следует отметить, что данные Дю Виньо о том, что инсулин является серосодержащим соединением, хорошо согласовывались с основными выводами работ, проводимых в то время в этом направлении профессором Джоном Якобом Абелем с сотрудниками в университете Джона Хопкинса. Поэтому стипендия Национального исследовательского совета, которую молодой ученый получил сразу же после защиты диссертации, оказалась очень кстати. Благодаря ей, Дю Виньо работал некоторое время под руководством профессора Абеля в медицинской школе университета Джона Хопкинса.
Профессор Абель, признанный авторитет в области изучения химии гормонов, придерживался в то время точки зрения, что инсулин является белковым соединением. Такие взгляды шли вразрез с доминировавшими в те годы представлениями. Как вспоминал сам Дю Виньо, «это было время, когда как химики, так и биологи никак не могли воспринять тот факт, что энзим может быть белковым соединением». Незадолго до этого профессор Абель смог впервые выделить инсулин в кристаллическом виде (1926). В планы Дю Виньо, когда он устроился на стажировку к Абелю, входило следующее: выделить из кристаллов инсулина аминокислоту цистин и попытаться изучить ее строение. Это ему очень быстро удалось осуществить. В результате исследований совместно с сотрудниками профессора и при его непосредственной помощи молодой ученый наглядно продемонстрировал образование ряда аминокислот при расщеплении молекулы инсулина. Одной из них была как раз серосодержащая аминокислота цистин. При этом опыты показали, что содержание серы в инсулине прямо соотносится с содержанием серы в цистине. Но достигнутые результаты требовали изучения других серосодержащих аминокислот.
Продолжение финансовой поддержки со стороны Национального исследовательского совета еще на один год позволило Дю Виньо посетить известные научные биохимические школы Западной Европы (Дрезден, Эдинбург, Лондон), там он смог получить дополнительный опыт в области изучения пептидов и аминокислот.
По возвращении в США ученый сначала работал в Иллинойском университете, а через три года перешел в медицинскую школу университета Джорджа Вашингтона. Здесь он продолжал свои исследования инсулина. Особенно интересными оказались его работы по изучению влияния дисульфидных связей в цистине на гипогликемический эффект инсулина (понижения сахара в крови). Работы в области инсулина стимулировали также новое направление исследований – изучение гормонов гипофиза.
Важным направлением его работ в университете Джорджа Вашингтона стало изучение механизма конверсии метионина в цистин в живых организмах. В последующие годы именно эти исследования подвели его к проблеме изучения биологического трансметилирования (переноса метильных групп от одной молекулы на другие).
В 1938 г. ученый был приглашен в Медицинский колледж Корнеллского университета. Здесь он продолжил изучение инсулина и развернул исследования по изучению гормонов задней доли гипофизной железы.
В годы второй мировой войны эти исследования пришлось на время прервать. Ученый со своими сотрудниками работал над синтезом пенициллина. По окончании войны Дю Виньо смог вернуться к прежним исследованиям. Особенно интенсивно он занялся работами по выделению ряда гормонов из коммерчески доступных экстрактов гипофиза и тканей гипофиза быка и свиньи.
Задняя доля гипофизной железы вырабатывает ряд гормонов, два из которых к тому времени были выделены в чистом виде. Один из них – окситоцин, стимулирующий гладкую мускулатуру матки, другой – вазопрессин – гормон, сокращающий периферические артериолы и капилляры, тем самым обусловливая повышение давления крови. Эти гормоны, как оказалось, очень трудно различать, т. к. они обладают сходными физическими свойствами. Именно из-за этого до середины 1920-х гг. медики и биохимики считали их одним веществом, обладающим широким спектром биологической активности. Благодаря совершенствованию методов химического анализа, в
частности фракционного осаждения, хроматографии и электрофореза, к 1940-м гг. эти гормоны удалось частично разделить.
В 1949 г. Дю Виньо, применив метод «противоточного распределения» для продажного экстракта, имеющего окситоциновую активность 20 ед/мг, получил препарат с активностью 850 ед/мг. Это сподвигло ученого предпринять попытку изучить строение вещества. С этой целью он осуществил фрагментацию полипептидной цепи. В результате полного гидролиза препарата окситоцина и данных анализа его аминокислотного состава Дю Виньо было установлено наличие восьми различных аминокислот в эквимолекулярном соотношении. Количество выделившегося аммиака соответствовало трем амидным группам типа
–CONH 2 , молекулярная масса – мономерному октапептиду. Один из восьми аминокислотных остатков был идентифицирован как цистин. Опыты по окислению цистина в окситоцине показывали, что обнаруженный ранее Дю Виньо дисульфидный мостик в цистине является частью кольцевой системы окситоцина.
Последовательность восьми аминокислот в окситоцине была установлена Дю Виньо с сотрудниками окончательно лишь в 1953 г. Следует отметить, что параллельно группе Дю Виньо над теми же проблемами в Вене работал профессор Ганс Туппи (Венский университет), который также в 1953 г. независимо от Дю Виньо установил последовательность аминокислот в окситоцине, использовав в своей работе метод Сенгера.
Дю Виньо шел несколько иным путем. Он и его сотрудники основывались главным образом не на анализе концевых аминокислот, а на идентификации компонентов большого числа низших пептидов. Они исследовали также реакцию окисленного окситоцина с бромной водой, в результате которой образовывались гептапептид и бромированный пептид. Изучение строения последнего показывало, что последовательность аминокислот в соответствующем дипептиде: цистин – тиразин.
Далее динитрофенильным методом было установлено, что N-концевой аминокислотой в гептапептиде является изолейцин. По заключению Дю Виньо из этого вытекает, что N-концевая последовательность в окисленном окситоцине:

HO 3 S – цис – тир – изл.

Аминокислоты из гормона окситоцина

Из тринадцати перечисленных ниже пептидов первые четыре были получены частичным гидролизом гептапептида, вторая группа – гидролизом окситоцина (при этом цистеиновые остатки превращались в остатки аланина). Затем отделяли нейтральную фракцию и обрабатывали бромной водой для окисления цистеинового звена в звено цистеиновой кислоты; полученный кислый пептид отделяли от нейтрального на ионнообменных смолах. Третья группа пептидов была получена гидролизом окситоцина, десульфированного на никеле Ренея. В приводимых ниже формулах, если последовательность аминокислот в пептидах известна, символы аминокислот разделены тире; если последовательность неизвестна, то символы разделены запятой.

Из гептапептида:

1. (асп – цис – SO 3 H).
2. (цис – SO 3 H, про).
3. (цис – SO 3 H, про, лей).
4. (цис – SO 3 H, про, лей, гли).

Из окситоцина:

5. (лей, гли, про).
6. (тир, цис – S – S – цис, асп, глу, лей, изл).
7. (тир, цис – S – S – цис, асп, глу).
8. (цис – S – S – цис, асп, глу).
9. (цис – SO 3 H, асп, глу).

Из десульфированного окситоцина:

10. (ала, асп).
11. (ала, асп, глу).
12. (глу, изл).
13. (ала, асп, глу, лей, изл).

Учитывая строение полученных пептидов и используя наложение отдельных компонентов пептидов, Дю Виньо с сотрудниками вывел следующую последовательность аминокислот в окситоцине:

цистин – тиразин – изолейцин – глутамин – NH 2 – аспарагин – NH 2 – цистин – пролин – лейцин – глицин – NH 2 .

Установленная ими структура окситоцина представлена на рис. 1.

Следует отметить, что одновременно с окситоцином Дю Виньо была определена структура другого гормона задней доли гипофиза – вазопрессина.
Структура гормона окситоцина была подтверждена его химическим синтезом в 1954 г., что являло собой впервые осуществленный полный синтез природных пептидов. Синтез включал конденсацию N-карбобензокси-S-бензилдипептида (I) с триамидом гептапептида (II) с помощью тетраэтилпирофосфита. После удаления карбобензокси- и бензильных групп, защищавших амино- и сульфгидрильные группы соответственно в обоих пептидах, образовавшийся нонапептид окисляли воздухом, в результате чего был получен окситоцин (рис. 2).
Так были осуществлены первый структурный анализ и первый синтез полипептидного гормона – выдающееся достижение в биохимии и медицине. С работ Дю Виньо в науке началась эра химического синтеза биологически активных природных пептидов.

Рис.2. Общая схема синтеза окситоцина по Дю Виньо

Как известно, в 1955 г. Дю Виньо была вручена Нобелевская премия по химии «за работу с биологически активными соединениями, и прежде всего за впервые осуществленный синтез полипептидного гормона».

Синтез инсулина в клетке

Инсули́н - гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Основное действие инсулина заключается в снижении концентрации глюкозы в крови.

Инсулин увеличивает проницаемость плазматических мембран для глюкозы, активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена, усиливает синтез жиров и белков. Кроме того, инсулин подавляет активность ферментов, расщепляющих гликоген и жиры. То есть, помимо анаболического действия, инсулин обладает также и антикатаболическим эффектом.

Нарушение секреции инсулина вследствие деструкции бета-клеток - абсолютная недостаточность инсулина - является ключевым звеном патогенеза сахарного диабета 1-го типа. Нарушение действия инсулина на ткани - относительная инсулиновая недостаточность - имеет важное место в развитии сахарного диабета 2-го типа.

Посттрансляционные модификации инсулина. 1) Препроинсулин (L - лидерный пептид, B - участок 1, C - участок 2, А - участок 3) 2) Спонтанный фолдинг 3) Образование дисульфидного мостика между А и В 4) Лидерный пептид и C отрезаются 5) Конечная молекула

Синтез и выделение инсулина представляют собой сложный процесс, включающий несколько этапов. Первоначально образуется неактивный предшественник гормона, который после ряда химических превращений в процессе созревания превращается в активную форму. Инсулин вырабатывается в течение всего дня,а не только в ночные часы.

Ген, кодирующий первичную структуру предшественника инсулина, локализуется в коротком плече 11 хромосомы.

На рибосомах шероховатой эндоплазматической сети синтезируется пептид-предшественник - препроинсулин. Он представляет собой полипептидную цепь, построенную из 110 аминокислотных остатков и включает в себя расположенные последовательно: L-пептид,B-пептид, C-пептид и A-пептид.

Почти сразу после синтеза в ЭПР (эндоплазматический ретикул-эндоплазматическая сеть) от этой молекулы отщепляется сигнальный (L) пептид - последовательность из 24 аминокислот, которые необходимы для прохождения синтезируемой молекулы через гидрофобную липидную мембрану ЭПР. Образуется проинсулин (полипептид, производимый бета-клетками островков Лангерганса поджелудочной железы.

Проинсулин является предшественником в процессе биосинтеза инсулина. Он состоит из двух цепей, имеющихся в молекуле инсулина (А-цепь и В-цепь), соединённых C-пептидом или (С-цепью, соединительной цепью), которая отщепляется в процессе образования инсулина от молекулы проинсулина), который транспортируется в комплекс Гольджи, далее в цистернах которого происходит так называемое созревание инсулина.

Созревание является наиболее длительным этапом образования инсулина. В процессе созревания из молекулы проинсулина с помощью специфических эндопептидаз вырезается C-пептид - фрагмент из 31 аминокислоты, соединяющий B-цепь и A-цепь. То есть молекула проинсулина разделяется на инсулин и биологически инертный пептидный остаток.

В секреторных гранулах инсулин, соединяясь с ионами цинка, образует кристаллические гексамерные агрегаты.

Инсулин оказывает на обмен веществ и энергии сложное и многогранное действие. Многие из эффектов инсулина реализуются через его способность действовать на активность ряда ферментов.

Инсулин - единственный гормон, снижающий содержание глюкозы в крови , это реализуется через:

· усиление поглощения клетками глюкозы и других веществ;

· активацию ключевых ферментов гликолиза;

· увеличение интенсивности синтеза гликогена - инсулин форсирует запасание глюкозы клетками печени и мышц путём полимеризации её в гликоген;

· уменьшение интенсивности глюконеогенеза - снижается образование в печени глюкозы из различных веществ

Анаболические эффекты:

· усиливает поглощение клетками аминокислот (особенно лейцина и валина);

· усиливает транспорт в клетку ионов калия, а также магния и фосфата;

· усиливает репликацию ДНК и биосинтез белка;

· усиливает синтез жирных кислот и последующую их этерификацию - в жировой ткани и в печени инсулин способствует превращению глюкозы в триглицериды; при недостатке инсулина происходит обратное - мобилизация жиров.

Антикатаболические эффекты:

· подавляет гидролиз белков - уменьшает деградацию белков;

· уменьшает липолиз - снижает поступление жирных кислот в кровь.

Заключение

Действительно, первый полный синтез пептида, гормона окситоцина (1953 г), содержащего всего 8 аминокислотных остатков, рассматривался как выдающееся достижение, принесшее его автору, В. дю Виньо, Нобелевскую премию 1955 г. Однако уже в следующие двадцать лет синтезы полипептидов подобной сложности превратились в рутину, так что в настоящее время синтез полипептидов, состоящих из 100 и более аминокислотных остатков, уже не рассматривается как непреодолимо трудная задача. Использование новых методов позволило осуществить синтез гормона инсулина и других гормонов. В данной работе ознакомились с понятием « полипептидов », разобрали и объяснили, что вызвало столь драматические изменения в области синтеза полипептидов. Ознакомились с синтезом пептидов и их твердофазным синтезом.

Литература

1.Plane R. Interview with Vincent du Vigneaud. Journal of Сhemical Education, 1976, v. 53, №1, p. 8–12;
2. Du Vigneaud V. A Trail of Research in Sulfur Chemistry and Metabolism and Related Fields. Ithaca, New York: Cornell University Press, 1952;
3. Bing F. Vincent du Vigneaud. Journal of Nutrition, 1982, v. 112, p. 1465–1473;
Du Vigneaud V., Melville D.B., Gyo..rgy P., Rose K.S. Identity of Vitamin H with Biotin. Science, 1940, v. 92, p. 62–63; Лауреаты Нобелевской премии. 4.Энциклопедия. Пер. с англ. Т. 2. М.: Прогресс, 1992

5. http://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%81%D1%83%D0%BB%D0%B8%D0%BD#.D0.A1.D0.B8.D0.BD.D1.82.D0.B5.D0.B7_.D0.B8.D0.BD.D1.81.D1.83.D0.BB.D0.B8.D0.BD.D0.B0_.D0.B2_.D0.BA.D0.BB.D0.B5.D1.82.D0.BA.D0.B5

6. http://www.chem.isu.ru/leos/base/comb/comb03.html


какую массу имеет часть молекулы ДНК,кодирующая молекулу инсулина,если известно,что в состав этой молекулы входит 51 аминокислота,а средняя

молекулярная масса одного нуклеотида равна 345 а. е. м.?

светочувствительный белок (опсин) зрительного пигмента палочек сетчатки глаза позвоночных животных и зрительных клеток беспозвоночных - родопсина состоит

из 348 аминокислотных остатков. определите относительную малекулярную массу данного белка, если считать, что средняя масса одного аминокислотного остатка равна 116

Задача № 1.

Фрагмент цепи иРНК имеет последовательность нуклеотидов: ЦЦЦАЦЦГЦАГУА. Определите последовательность нуклеотидов на ДНК, антикодоны тРНК и последовательность аминокислот во фрагменте молекулы белка, используя таблицу генетического кода.

Задача № 2. Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ТАЦЦЦТЦАЦТТГ. Определите последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода.

Задача № 3
Последовательность нуклеотидов фрагмента цепи ДНК ААТГЦАГГТЦАЦТЦА. Определите последовательность нуклеотидов в и-РНК, аминокислот в полипептидной цепи. Что произойдет в полипептиде, если в результате мутации во фрагменте гена выпадет второй триплет нуклеотидов? Используйте таблицу гент.кода
Практикум-решение задач по теме « Биосинтез белка» (10 класс)

Задача № 4
Участок гена имеет следующее строение: ЦГГ-АГЦ-ТЦА-ААТ. Укажите строение соответствующего участка того белка, информация о котором содержится в данном гене. Как отразится на строении белка удаление из гена четвёртого нуклеотида?
Задача № 5
Белок состоит из 158 аминокислот. Какую длину имеет кодирующий его ген?
Молекулярная масса белка Х=50000. Определите длину соответствующего гена. Молекулярная масса одной аминокислоты в среднем 100.
Задача № 6
Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок инсулин из 51 аминокислоты?
Задача № 7
Одна из цепей ДНК имеет молекулярную массу 34155. Определите количество мономеров белка, запрограммированного в этой ДНК. Молекулярная масса одного нуклеотида в среднем 345.
Задача № 8
Под воздействием азотистой кислоты цитозин превращается в гуанин. Как изменится строение синтезируемого белка вируса табачной мозаики с последовательностью аминокислот: серин-глицин-серин-изолейцин-треонин-пролин, если все цитозиновые нуклеотиды подверглись действию кислоты?
Задача № 9
Какова молекулярная масса гена (двух цепей ДНК), если в одной цепи его запрограммирован белок с молекулярной массой 1500? Молекулярная масса одной аминокислоты в среднем 100.
Задача № 10
Дан фрагмент полипептидной цепи: вал-гли-фен-арг. Определите структуру соответствующих т-РНК, и-РНК, ДНК.
Задача № 11
Дан фрагмент гена ДНК: ЦЦТ-ТЦТ-ТЦА-А… Определите: а) первичную структуру белка, закодированного в этом участке; б) длину этого гена;
в)первичную структуру белка, синтезированного после выпадения 4-го нуклеотида
в этой ДНК.
Задача № 12
Сколько будет кодонов в и-РНК, нуклеотидов и триплетов в гене ДНК, аминокислот в белке, если даны 30 молекул т-РНК?
Задача № 13

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов: АТАГЦТГААЦГГАЦТ. Установите нуклеотидную последовательность участка т-РНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

1.Голубоглазый мужчина, родители которого имели карие глаза, женился на кареглазой женщине, у отца которой были голубые глаза, а у матери -

карие.Какое потомство можно ожидать от этого брака, если известно, что ген карих глаз доминирует над геном голубых?
2.В семье было два брата. Один из них,больной геморрагическим диатезом,женился на женщине также больной данным заболеванием. Все трое их детей(2 девочки и 1 мальчик) были также больны. Второй брат был здоров и женился на здоровой женщине. Из четырёх их детей только один был болен геморрагическим диатезом. Определите,каким геном определяется геморрагический диатез.
3. В семье,где оба родителя имели нормальный слух,родился глухой ребенок. Какой признак является доминантным, Каковы генотипы всех членов этой семьи?
4.Мужчина,страдающий альбинизмом,женится на здоровой женщине,отец которой страдал альбинизмом. Каких детей можно ожидать от этого брака,если учесть,что альбинизм наследуется у человека как аутосомный рецессивный признак?.

1. Что такое пара альтернативных признаков? Какой признак из пары называется

рецессивным?
2. Одна из форм шизофрении наследуется как рецессивный признак. Определите вероятность рождения ребенка с шизофренией от здоровых родителей, если известно, что бабушка со стороны отца и дед со стороны матери страдали этим заболеванием.
3. Что такое анализирующее скрещивание?
4. У крупного рогатого скота комолость (отсутствие рогов) доминирует над рогатостью.
Комолый бык был скрещен с тремя коровами. От скрещивания с одной рогатой коровой
родился рогатый теленок, от скрещивания с другой - комолый, от скрещивания с комолои коровой родился рогатый теленок. Каковы генотипы всех животных, участвовавших в скреш.ивании?
5. Если у пшеницы ген, определяющий малую длину колоса, не полностью доминирует над геном, ответственным за возникновение колоса большей длины, то какой длины колосья могут появиться при скрещивании двух растений, имеющих колосья средней длины?
6. Андалузские (голубые) куры - это гетерозиготы, появляющиеся обычно при скрещивании
белых и черных кур. Какое оперение будет иметь потомство, полученное от скрещивания
белых и голубых кур, если известно, что ген, обуславливающий черное оперение у кур,это ген неполного доминирования (по отношению к рецессивному гену, ответственному за
формирование белого цвета оперения)?
7. У матери вторая группа крови, и она гетерозиготна. У отца четвертая группа крови. Какие группы крови возможны у детей?
8. Сформулируйте второй закон Менделя и закон чистоты гамет.
9. Какое скрещивание называют дигибридным? Какое полигибридным?
10. Растение томата с красными грушевидными плодами скреицено с растением, имеюицим красные шаровидные плоды. Получено 149 растений, с красными шаровидными плодами и 53 растения с желтыми шаровидными плодами. Определите доминантные и
рецессивные признаки,генотипы родителей и потомков.
11. Известно, что катаракта и рыжеволосость у человека контролируются доминантными генами, локализованными в разных парах хромосом (аутосомных). Рыжеволосая женш.ина, не страдающая катарактой, вышла замуж за светловолосого мужчину, недавно перенесшего операцию по удалению катаракты. Определите, какие дети могут родиться у этих супругов, если иметь в виду, что мать мужчины имеет такой же фенотип, как и его жена, то есть она рыжеволосая и не имеет катаракты.
12. В чем особенность наследования признаков, сцепленных с полом?
14. Какое взаимодействие неаллельных генов называется эпигенезом (эпистазом)
15. У лошадей действие генов вороной масти (С) и рыжей масти (с) проявляется только в отсутствие доминантного гена D. Если он присутствует, то окраска белая. Какое потомство получится при скрещивании между собой лошадей с генотипом CcDd?