Механическое движение. Траектория




Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой .
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное - траектория представляет собой отрезок прямой;
б) криволинейное - траектория представляет собой отрезок кривой.

Путь - это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение - это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение - это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь - это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:


Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:


Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение - это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x 0 + V x t , где x 0 - начальная координата тела, V x - скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с 2 , не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω :

Угловая скорость связана с линейной скоростью соотношением

где r - радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду - частота обращения - ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением , оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса - это мера инертности тела
Сила - это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом - Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости .

Закон Гука записывают в виде

где k - жёсткость пружины, x - деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N - сила реакции опоры, µ - коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R - расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести - это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила - сила тяжести.
Искусственный спутник Земли - это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила - сила тяжести, направленная к центру Земли
Первая космическая скорость - это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R - расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение ; если никаких сил не возникает - безразличное (см. рис. 3).


Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d -плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ - плотность жидкости, h - глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда : на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρ жидк - плотность жидкости, в которую погружено тело; V погр - объём погружённой части тела.

Условие плавания тела - тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс - векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса : сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность - это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h - высота подъёма

Энергия сжатой пружины:

где k - коэффициент жёсткости пружины, x - абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии : если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний . Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с -1 . Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l - длина маятника.

Период колебаний груза на пружине определяется по формуле

где k - жёсткость пружины, m - масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной , если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной , если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v - скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Механика -раздел физики, изучающий законы движения и взаимодействия тел. Кинематика - раздел механики, не изучающий причины движения тел.

Механическое движение – изменение положение тела в пространстве относительно других тел с течением времени.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.

Поступательным называется движение, при котором все точки тела движутся одинаково. Поступательным называется движение, при котором любая прямая, проведенная через тело, остаётся параллельной сама себе.

Кинематические характеристики движения

Траектория линия движения. S - путь длина траектории .


S – перемещение – вектор, соединяющий начальное и конечное положение тела.

Относительность движения. Система отсчёта - совокупность тела отсчёта, системы координат и прибора для измерения времени (часов)

система координат

Прямолинейным равномерным движением называют такое движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Скорость - физическая величина, равная отношению вектора перемещения к промежутку времени, в течение которого это перемещение произошло. Скорость равномерного прямолинейного движения численно равна перемещению за единицу времени.


Средняя скорость неравномерного движения

Основная задача механики (ОЗМ)– определение положения тела в пространстве в любой момент времени. Мгновенная скорость - скорость – тела в данный момент момент времени.

Классический закон сложения скоростей



Скорость тела в подвижной СО равна векторной сумме скорости тела в неподвижной СО и скорости самой подвижной СО

План-конспект урока по теме «Обобщение и систематизация знаний по теме « »

Дата :

Тема: «Обобщение и систематизация знаний по теме « Равномерное и неравномерное движение. Сложение скоростей »

Цели:

Образовательная : формирование практических умений по решению задач на тему «Неравномерное движение. Сложение скоростей»;

Развивающая : совершенствовать интеллектуальные умения (наблюдать, сравнивать, размышлять, применять знания, делать выводы), развивать познавательный интерес;

Воспитательная : прививать культуру умственного труда, аккуратность, учить видеть практическую пользу знаний, продолжить формирование коммуникативных умений, воспитывать внимательность, наблюдательность.

Тип урока: обобщение и систематизация знаний

Оборудование и источники информации:

    Исаченкова, Л. А. Физика: учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2015

Структура урока:

    Организационный момент (5 мин)

    Актуализация опорных знаний (5 мин)

    Закрепление знаний(30 мин)

    Итоги урока (5 мин)

Содержание урока

    Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны закрепить полученные знания по решению А это значит, что Тема урока : « Обобщение и систематизация знаний по теме « Равномерное и неравномерное движение. Сложение скоростей »

    Актуализация опорных знаний

    Какое движение называется равномерным?

    Какое движение называется неравномерным? Можно ли утверждать, что тело движется равномерно, если пути, проходимые телом за каждый час. одинаковы?

    Что показывает средняя скорость пути? Средняя скорость перемещения? Как их вычисляют?

    В чем смысл закона сложения скоростей Галилея?

    Закрепление знаний

А сейчас перейдем к решению задач:

1

Если два тела движутся вдоль одной прямой в одном направлении со скоростями, модули которых и, то модуль относительной скорости движения тел всегда равен:

a ) ; в) ;

б);г) ;

2

Какой путь прошел пешеход, двигавшийся со средней путевой скоростью < > = 4,8 за промежуток времени Δ t = 0,5 ч?

3

Первую часть дистанции конькобежец пробежал за время Δ = 20 с со скоростью, модуль которой = 7,6, а вторую - за время Δ t 2 = 36 с со скоростью, модуль которой v 2 = 9,0 . Определите среднюю скорость движения конькобежца на всей дистанции.

4

Автомобиль, двигаясь по прямолинейному участку шоссе со скоростью, модуль которой = 82 , обгоняет мотоциклиста. Чему равен модуль скорости движения мотоциклиста, если через промежуток времени Δ t = 2,8 мин от момента обгона расстояние между автомобилем и мотоциклистом стало L =1,4 км?

5

Первую половину пути автомобиль проехал со средней скоростью v 1 = 60 км/ч , а вторую – со средней скоростью v 2 = 40 км/ч. Определить среднюю скорость автомобиля на всем пути.

    Закрепление знаний

    Быстрота неравномерного движения на участке траектории характеризуется средней скоростью, а в данной точке траектории - .мгновенной скоростью.

    Мгновенная скорость приближенно равна средней скорости, определенной за малый промежуток времени. Чем меньше этот промежуток времени, тем меньше отличие средней скорости от мгновенной.

    Мгновенная скорость направлена по касательной к траектории движения.

    Если модуль мгновенной скорости возрастает, то движение тела называют ускоренным, если он убывает - замедленным.

    При равномерном прямолинейном движении мгновенная скорость одинакова в любой точке траектории.

    Перемещение тела относительно неподвижной системы отсчета равно векторной сумме его перемещения относительно движущейся системы и перемещения движущейся системы относительно неподвижной.

    Скорость тела в неподвижной системе отсчета равна векторной сумме его скорости относительно движущейся системы и скорости движущейся системы относительно неподвижной.

    Итоги урока

Итак, подведем итоги. Что вы сегодня узнали на уроке?

Организация домашнего задания

§6-10, упр. 3 № 5, упр. 6 № 11.

Рефлексия.

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся


Занятие № 3

Тема . Равномерное прямолинейное движение. Скорость. Закон сложения скоростей. Графики движения.

Цель : формирование знаний о прямолинейном движении, скорости как физической величине, классическом законе добавления скоростей, решение основной задачи механики для прямолинейного равномерного движения; рассмотрение графиков зависимости скорости, координат прямолинейного равномерного движения от времени.

Тип занятия: комбинированный урок.


  1. Организационный этап

  2. ^ Проверка домашнего задания.
Преподаватель избирательно проверяет письменное домашнее задание у трёх-четырёх учеников или привлекает к такой проверке учеников с высоким уровнем подготовки.

Фронтальный опрос.


  • Что называется системой отсчёта?

  • Что такое траектория? На какие виды делящееся движение в зависимости от траектории?

  • Что называется путём? перемещением?

  • В чём заключается отличие между путём и перемещением?

  • В чём заключается сущность понятия относительности движения?

  1. Сообщение темы, цели и заданий урока
План изучения темы

  1. Равномерное прямолинейное движение.

  2. Скорость равномерного прямолинейного движения как физическая величина.

  3. Закон добавления скоростей.

  4. Перемещение прямолинейного равномерного движения. Решение основной задачи механики для прямолинейного равномерного движения.

  5. Графики движения.

  1. Изучение нового материала
1. Равномерное прямолинейное движение

Наиболее простым видом движения является равномерное прямолинейное движение.

Равномерным прямолинейным движением называется такое движение тела, при котором тело за любые равные интервалы времени осуществляет одинаковые перемещения и траектория его движения является прямой линией.

Вопрос к студентам:


  1. Приведите примеры равномерного прямолинейного движения.

  2. Как вы считаете, часто ли нам встречаются случаи прямолинейного равномерного движения?

  3. Зачем изучать данный вид движения, уметь описывать его закономерности?
^ 2. Скорость равномерного прямолинейного движения как физическая величина

Одной из характеристик равномерного прямолинейного движения является его скорость. Преподаватель предлагает студентам охарактеризовать скорость как физическую величину по обобщенному плану характеристики физической величины.

Обобщенный план характеристики физической величины:


  1. Явление, которое характеризует величина.

  2. Определение, обозначение.

  3. Формулы, которые связывают данную величину с другими величинами.

  4. Единицы измерения.

  5. Способы измерения.
Скорость равномерного прямолинейного движения как физическая величина

  1. прямые измерения (с помощью спидометра, радара);

  2. непрямые измерения (по формуле)
Обозначаем :

- вектор скорости;

υ x , υ y - проекции вектора скорости на координатные оси Ox, Oy;

υ - модуль скорости.

Вопрос :

Может ли быть проекция скорости отрицательной? (Проекция скорости может быть как положительной, так и отрицательной в зависимости от того, как двигается тело (рис. 1).)


  1. ^ Закон сложения скоростей
Как нам уже известно, скорость есть величи­на относительная и зависит от выбранной системы отсчета.

Если перемещение одной и той же материальной точки рассматривать относительно двух систем отсчета, связанных с неподвижным телом и подвижным (например, за движением человека по палубе катера наблюдает человек, который стоит на берегу реки, по которой плывёт этот катер, и человек, который сам в то же время находится на катере), то можно сформулировать классический закон добавления скоростей.

Закон добавления скоростей: скорость тела относительно неподвижной системы отсчёта равняется векторной сумме скорости тела относительно подвижной системы отсчета и собственно скорости подвижной системы отсчёта относительно неподвижной:

где и - скорости тела относительно неподвижной и подвижной систем отсчета соответственно, а - скорость подвижной системы отсчета относительно неподвижной (рис. 2).


  1. ^ Перемещение прямолинейного равномерного движения. Решение основной задачи механики для прямолинейного равномерного движения
Из формулы
можно определить модуль перемещения для прямолинейного равномерного движения:
.

Если материальная точка, двигаясь по оси ОХ, переместилась из точки с координатой x 0 в точку с координатой х , то за время t она осуществила перемещение:
(рис. 3).

Так как основной задачей механики является определение положения тела в данный момент времени по известным начальным условиям, то уравнение
и является решением основной задачи механики.

Это уравнение так же называют основным законом равномерного прямолинейного движения.


  1. Графики движения

  1. График зависимости проекции скорости от времени
Графиком функции
является прямая, параллельная оси времени t (рис. 4, а).

Если > 0, то эта прямая проходить выше оси времени t , а если t .

Площадь фигуры, ограниченной графиком и осью t , численно равняется модулю перемещения (рис. 4, б).


  1. График зависимости проекции перемещения от времени
Графиком
является прямая, проходящая через начало координат. Если > 0, то s x увеличивается со временем, а если s x уменьшается со временем (рис. 5, а). Наклон графика тем больше, чем больше модуль скорости (рис. 5, б).

Если идет речь о графике пути, то следует помнить, что путь - это длина траектории, поэтому уменьшаться не может, а может только расти со временем, следовательно, данный график не может приближаться к оси времени (рис. 5, в).


  1. ^ График зависимости координаты от времени
График
отличается от графика
только смещением на x 0 по оси координат.

Точка пересечения графиков 1 и 2 отвечает моменту, когда коорди­наты тел равны, то есть эта точка определяет момент времени и координату встречи двух тел (рис. 6).


  1. Применение приобретённых знаний
Решение задач (устно)

  1. В произвольном порядке приведены подвижные объекты: пешеход; зву­ковые волны в воздухе; молекула кислорода при 0 °С; слабый ветер; электромагнитные волны в вакууме; штормовой ветер.
Попробуйте расположить объекты в нисходящем порядке по скоростям (скорости объектов не даны, студенты используют предварительно приобретенные знания, интуицию).

Ответ :


  1. электромагнитные волны в вакууме (300 000 км/с);

  2. молекула кислорода при 0 °С (425 м/с);

  3. звуковые волны в воздухе (330 м/с);

  4. штормовой ветер (21 м/с);

  5. слабый ветер (4 м/с);

  6. пешеход (1,3 м/с).

  1. Подведение итогов урока и сообщение домашнего задания
Преподаватель подводит итоги урока, оценивает деятельность учеников.

Домашнее задание


  1. Выучить теоретический материал по учебнику.

  2. Решить задачи.
Тест

Найдите правильный ответ.


  1. Какое из приведенных примеров движения можно считать равномерным?

  1. Происходит торможение автомобиля

  2. Пассажир спускается эскалатором метрополитена

  3. Самолет взлетает

  1. Прямолинейным равномерным называют движение, при котором:

  1. модуль скорости тела остается неизменный

  2. скорость тела изменяется на одинаковое значение за любые одинаковые промежутки времени

  3. тело выполняет одинаковые перемещения за любые интервалы времени

  1. Пассажирский поезд, двигаясь равномерно, за 20 мин прошёл путь 30 км. Найдите скорость движения поезда.
А 10 м/с Б 15 м/с В 25 м/с

  1. Мотоцикл двигается со скоростью 36 км/ч. Какой путь он пройдёт за 20 с?
А 200 м Б 720 км В 180 м

  1. На рис. 7 приведен график зависимости пути равномерного движения от времени. Какая скорость движения тела?
А 5 м/с Б 10 м/с В 20 м/с

  1. На рис. 8 приведен график зависимости скорости равномерного движения от времени. Какой путь прошло тело за 3 с?
А 4 м Б 18 м В 36 м


Как вы думаете, движетесь вы или нет, когда читаете этот текст? Практически каждый из вас сразу ответит: нет, не двигаюсь. И будет неправ. Некоторые могут сказать: двигаюсь. И тоже ошибутся. Потому, что в физике некоторые вещи не совсем такие, какими кажутся на первый взгляд.

Например, понятие механического движения в физике всегда зависит от точки (или тела) отсчета. Так летящий в самолете человек перемещается относительно оставшихся дома родных, но находится в состоянии покоя относительно друга, сидящего рядом. Так вот скучающие родственники или спящий на плече друг - это, в данном случае, тела отсчета для определения, движется наш вышеупомянутый человек или нет.

Определение механического движения

В физике определение механического движения, изучаемое в седьмом классе, следующее: изменение положения тела относительно других тел с течением времени называется механическим движением. Примерами механического движения в быту будут движение автомобилей, людей и пароходов. Комет и кошек. Пузырьков воздуха в закипающем чайнике и учебников в тяжелом рюкзаке школьника. И всякий раз высказывание о движении либо покое одного из этих предметов (тел) будет лишенным смысла без указания тела отсчета. Поэтому в жизни мы чаще всего, когда говорим о движении, имеем в виду движение относительно Земли или статичных объектов - домов, дорог и так далее.

Траектория механического движения

Нельзя также не упомянуть такую характеристику механического движения, как траектория. Траектория - это линия, по которой движется тело. Например, отпечатки ботинок на снегу, след самолета в небе и след слезы на щеке - все это траектории. Могут они быть прямыми, изогнутыми или ломаными. А вот длина траектории, или же сумма длин - это путь, пройденный телом. Обозначается путь буквой s. И измеряется в метрах, сантиметрах и километрах, либо же в дюймах, ярдах и футах, в зависимости от того, какие в этой стране приняты единицы измерения.

Виды механического движения: равномерное и неравномерное движение

Какие бывают виды механического движения? Например, во время поездки на машине водитель движется с разной скоростью, когда едет по городу и практически с одинаковой скоростью, когда выезжает на трассу за городом. То есть он движется либо неравномерно, либо равномерно. Так вот движение, в зависимости от пройденного пути за равные промежутки времени называют равномерным либо неравномерным.

Примеры равномерного и неравномерного движения

Примеров равномерного движения в природе очень мало. Почти равномерно движется вокруг Солнца Земля, капают капли дождя, всплывают пузырьки в газировке. Даже пуля, выпущенная из пистолета, движется прямолинейно и равномерно только на первый взгляд. От трения о воздух и притяжения Земли полет ее постепенно становится медленнее, а траектория снижается. Вот в космосе пуля может двигаться действительно прямолинейно и равномерно, пока не столкнется с каким-либо другим телом. А с неравномерным движением дело обстоит куда как лучше - примеров множество. Полет мяча во время игры в футбол, движения льва, охотящегося на добычу, путешествия жвачки во рту семиклассника и бабочки, порхающей над цветком, - все это примеры неравномерного механического движения тел.