Количественный анализ. Химические методы анализа




Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1.2 Основные приемы и методы анализа неизвестного образца

Заключение

Список использованных источников информации

Введение

Аналитическая химия имеет огромное практическое значение в жизни современного общества, поскольку создает средства для химического анализа и обеспечивает его осуществление.

Химический анализ является важным средством контроля производства и оценки качества продукции в целом ряде отраслей промышленного производства, таких как черная и цветная металлургия, машиностроение, производство чистых и сверхчистых материалов для радиоэлектронной промышленности, горнодобывающая промышленность, химическая нефтеперерабатывающая, нефтехимическая, фармацевтическая и пищевая промышленности, геологическая служба и т.д.Без химического анализа невозможно решение проблем охраны окружающей среды, функционирование агропромышленного комплекса, проведение медицинской диагностики, развитие биотехнологии.

Научной основой химического анализа является аналитическая химия, которая разрабатывает теоретические основы методов анализа или заимствует их у смежных областей химической и физической науки и приспосабливает к своим целям. Аналитическая химия определяет границы применимости методов, оценивает их метрологические характеристики, разрабатывает способы анализа различных объектов. Итак, аналитическая химия - это область научного знания, раздел химической науки, а аналитическая служба - это система обеспечения потребностей общества в химических анализах.

Целью курсовой работы по дисциплине «Аналитическая химия и физико-химические методы анализа» является освоение основных принципов качественного и количественного анализа.

Поставленная цель достигается решением конкретного задания по анализу неизвестного вещества, проведением расчета по титриметрическому методу анализа и построением соответствующей кривой титрования.

1. Качественный анализ неизвестного вещества

1.1 Теоретические сведения по качественному анализу

Качественный анализ - раздел аналитической химии, посвященный установлению качественного состава веществ, то есть обнаружению элементов и образуемых ими ионов, входящих в состав и простых, и сложных веществ. Делают это с помощью химических реакций, характерных для данного катиона или аниона, позволяющих обнаружить их как в индивидуальных веществах, так и в смесях.

Химические реакции, пригодные для качественного анализа, должны сопровождаться заметным внешним эффектом. Это может быть: выделение газа, изменение окраски раствора, выпадение осадка, растворение осадка, образование кристаллов характерной формы.

В первых четырех случаях за протеканием реакции наблюдают визуально, кристаллы рассматривают под микроскопом.

Для получения правильных результатов необходимы реакции, выполнению которых не мешают другие присутствующие ионы. Для этого нужны специфические (взаимодействующие только с определяемым ионом) или хотя бы селективные (избирательные) реагенты.

К сожалению, селективных, тем более специфических реагентов очень мало, поэтому при анализе сложной смеси приходится прибегать к маскированию мешающих ионов, переводя их в реакционно-инертную форму, или, чаще, к разделению смеси катионов или анионов на составные части, называемые аналитическими группами. Делают это с помощью специальных (групповых) реагентов, которые с рядом ионов, реагируя в одних и тех же условиях, образуют соединения с близкими свойствами - малорастворимые осадки или устойчивые растворимые комплексы. Это и позволяет разделить сложную смесь на более простые составные части. Качественный анализ состоит из следующих этапов:

Предварительные наблюдения;

Предварительные испытания;

Действие кислот на сухой образец;

Переведение анализируемой пробы в раствор;

Систематический (или дробный) качественный анализ катионов и

При проведении аналитических реакций необходимо придерживаться определенных условий. К ним относятся концентрация реагирующих веществ, реакция среды, температура .

1.2 Основные приемы и методы анализа неизвестного образца. Подготовка вещества к анализу

Приступая к исследованию химического состава данного вещества, необходимо сначала внимательно его рассмотреть, опреде-ляя его внешний вид, цвет, запах, степень измельчения (порошок, круп-нозернистая или мелкозернистая смесь, сплошная масса и т. д.), наличие кристаллических или аморфных фаз и подготовить соответствующим образом к анализу и лишь после этого приступить к установлению его химического состава.

Подготовка исследуемого вещества к анализу представляет собой очень, важную часть всего исследования.

По окраске анализируемого образца можно высказать пред-положения о наличии или отсутствии в нем тех или иных катионов. Если, например, анализируемый объект представляет собой бесцветную про-зрачную или белую массу, то это указывает на отсутствие в нем значи-тельных количеств окрашенных катионов -- хрома(III) Сr 3+ (сине-фиолетовый цвет), марганца(II) Мn 2+ (светло-розовый), железа(III) Fe 3+ (желто-бурый), кобальта(II) Со 2+ (розовый), никеля(II) Ni 2+ (зеленый), меди(II) Сu 2+ (голубой). Если образец окрашен, то можно предположить содержание в нем одного или нескольких из вышеуказанных катионов. Для полного анализа исследуемого вещества необходимо взять небольшое его количество, измеряемое миллиграммами. Качественный анализ выполняют в две стадии. Сначала проводят предварительные испытания, a, затем переходят к систематическому анализу катионов и анионов.

Предварительные испытания

Предварительные испытания позволяют установить присутствие некоторых элементов, обнаружение которых затруднено при систематическом ходе анализа.

Окрашивание пламени

Для испытания на окрашивание пламени берут проволоку длиной 60 мм, диаметром 2-3 мм. Один коней ее сгибают в петлю, другой конец впаивают в стеклянную палочку, которая служит ручкой. Проволока должна быть хорошо очищена многократным прокаливанием в наиболее горячей несветящегося пламени горелки. Проволоку опускают в соляную кислоту и прокаливают в пламени горелки, затем охлаждают до комнатной температуры. На подготовленную таким образом проволоку помещают несколько кристаллов анализируемого вещества и вносят в пламя горелки. Различные ионы окрашивают пламя в следующие цвета:

Карминово-красный………………………Sr 2+ ,Li 2+

Кирпично-красный……………………….Са 2+

Желтый…………………………………….Na +

Желто-зеленый……………………………Ba 2+

Сине-зеленый…………………………......Те

Светло-голубой……………………………As,Sb,Pb 2+

Ярко-голубой………………………………Cu 2+ ,Se

Фиолетовый ……………………………….К + ,Rb + или Сs +

Смачивание проволоки хлороводород-ной кислотой проводят для того, чтобы получить в пламени летучие хло-риды катионов, присутствующих в пробе (если она содержит нелетучий или труднолетучий компонент).

По характеру продуктов термолиза (прокаливания) пробы твердого анализируемого вещества иногда можно судить о присутствии в анализируемом веществе не-которых катионов и анионов.

Для проведения этого теста небольшую порцию анализируемого ве-щества помещают на дно тугоплавкой пробирки (длиной ~7 см) и нагревают пробу, закрепив пробирку в горизонтальном положении, в пламени газовой горелки. При термическом разложении пробы выделяются газообразные продукты термолиза, часть которых конденсируется на холодном конце пробирки.

По окраске возгона можно сделать некоторые предварительные выводы:

Цвет возгона Возможные продукты термолиза

Белый …………………………………… Соли аммония, Hg 2 Cl 2 , HgCl 2 ,

Желтый…………………………………...HgI 2 , As 2 S 3 , S

Зеркальный металлический …………….Мышьяк или ртуть (налет)

При термическом разложении наряду с возгонкой может происходить выделение паров и газов. Появление капелек воды на стенках холодной части пробирки (труб-ки) свидетельствует о том, что либо испытуемый образец содержит кристаллизационную воду, либо вода образуется в процессе термолиза пробы (с выделением воды разлагаются гидроксиды, кислые и основные соли, органические соединения).

Выделение фиолетовых паров иода и их конденсация в виде темных кристалликов указывает на возможность присутствия иодид-ионов или других йодсодержащих анионов :

Кроме фиолетовых паров иода могут выделяться бурые пары брома (возможно присутс твие бромид-ионов и других бромсодержащих анионов), желто-бурые пары оксидов азота (возможно присутствие нитратов и нитритов), а также газообразные СО (возмож-но присутствие оксалатов), СО 2 (возможно присутствие карбонатов, оксалатов), С1 2 (возможно присутствие хлорид-ионов и других хлорсодержащих анионов), SO 2 (возможно присутствие сульфитов, тио-сульфатов), SO 3 (возможно присутствие сульфатов), NH 3 (возможно присутствие солей аммония), О 2 (возможно присутствие пероксидов, нитратов, хроматов, дихроматов и т. п.).

Действие разбавле нной (~1 моль/л) серной кислоты

Разбавленная серная кислота вытесняет слабые кислоты из их солей -- карбонатов, сульфитов, тиосульфатов, сульфидов, цианидов, нитритов, ацетатов. Выделяющиеся слабые кислоты, неустойчивые в кислой среде, либо улетучиваются, либо разлагаются с образованием газообразных продуктов.

При наличии в анализируемом образце карбонатов выделяется газо-образный диоксид углерода СО 2 (бесцветный и без запаха). При наличии сульфитов и тиосульфатов выделяется диоксид серы SO 2 с запахом горя-щей серы; при наличии сульфидов -- сероводород H 2 S с запахом тухлых яиц; при наличии цианидов -- пары синильной кислоты HCN с запахом горького миндаля; при наличии нитритов -- бурые пары диоксида азота NO 2 , при наличии ацетатов -- пары уксусной кислоты СН 3 СООН с запахом уксуса.

Тест проводят следующим образом: от-бирают небольшое количество анализируемого вещества в пробирку и по каплям прибавляют к нему разбавленную серную кислоту. Выделение газов ука-зывает на присутствие в анализируемой пробе вышеуказанных анионов слабых, неустойчивых в кислой среде кислот.

Концентрированная серная кислота при взаимодействии с анализируемым веществом может выделять газообразные продукты реакций также из фторидов, хлоридов, бромидов, иодидов, тиоцианатов, оксалатов, нитратов.

При наличии в анализируемом веществе фторидов выделяются пары фтороводорода HF; при наличии хлоридов -- пары НС1 и газообразный хлор С1 2 ; при наличии бромидов -- пары НВг и желтый газообразный бром Вг 2 ; при наличии иодидов -- фиолетовые пары иода J 2 ; при наличии тиоцианатов -- газообразный диоксид серы SO 2 ; при наличии оксалатов -- бесцветные газообразные оксид СО и диоксид СО 2 углерода.

Тест проводят следующим образом. К небольшой массе твердого анализируемого вещества (0,010 г) в пробирке медленно, осторожно, по каплям прибавляют концентрирован-ную серную кислоту. Если наблюдается газовыделение, то это свидетель-ствует о присутствии в анализируемом образце вышеуказанных анионов .

Для проведения этой пробы берут смесь разбавленной Н 2 SO 4 с KJ, добавляют несколько кристалликов исследуемого вещества, предварительно измельченного до порошкообразного состояния, или 3-4 капли раствора анализируемого вещества (если вещество растворимо). При наличии окислителей выделяется свободный иод, который обнаруживается по бурой окраске раствора или с помощью крахмала. Эту реакцию дают NO 2 - ,NO 3 - , MnO 4 - , CrO 4 2- , ионы Fe 3+ , Cu 2+ .

Для обнаружения восстановителей берут смесь разбавленных растворов KMnO 4 + H 2 SO 4 .Обесцвечивание этого раствора вызывают SO 3 2- , S 2- , S 2 O 3 2- , J - , NO 2 - ,Cl - , Fe 2+ , Cr 3+ -ионы:

Растворение в воде

Небольшое количество анализируемого вещества вносят в пробирку, прибавляют несколько миллилитров дистиллированной воды и перемешивают смесь некоторое время. Если вещество при этом полностью растворилось в воде, то большую часть вещества, отобранную для анализа, растворяют в возможно мини-мальном объеме дистиллированной воды и полученный раствор анализи-руют далее. Небольшую часть исходной твердой анализируемой пробы оставляют для проведения повторных или проверочных тестов, если это окажется необходимым.

Анализ на катионы

Аналитическая группа - группа катионов, которая с каким - либо одним реактивом (при определенных условиях) может давать сходные аналитические реакции. Деление катионов на аналитические группы основано на их отношении к различным анионам. Приняты две классификации: сульфидная и кислотно-щелочная.

По кислотно-щелочной классификации катионы делятся на шесть аналитических групп (таблица 1)

Таблица 1-Разделение катионов на группы по кислотно-щелочной классификации

Групповой

Получаемые

соединения

Групповая

характеристика

K + , Na + , NH 4 +

Хлориды, сульфаты и гидроокиси растворимы в воде

Осадок AgCl, PbCl 2

Хлориды нерастворимы в воде

Осадок BaSO 4 , CaSO 4

Сульфаты нерастворимы (или плохо растворимы) в воде и кислотах

Zn 2+ ,Al 3+ , Cr 3+,

Избыток 4н КОН или NaOH

Раствор ZnO 2 2- , AlO 2 - , CrO 2 - ,

Гидроксиды растворимы в избытке едкой щелочи

Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+

Избыток 25%-ного NH 3

Осадок Mg(OH) 2 , Mn(OH) 2 , Fe(OH) 2 , Fe(OH) 3

Гидроксиды нерастворимы в избытке едкой щелочи

Ni 2+ , Co 2+ , Cu 2+

Избыток 25%-ного NH 3

Ni(NH 3) 4 2+ , Co(NH 3) 4 2+ , Cu(NH 3) 6 2+

Гидроксиды растворимы в избытке аммиака

Анализ анионов В основу классификации анионов положено различие в растворимости солей бария и серебра. В соответствии с наиболее распространенной классификацией анионы делятся на три аналитические группы, как это представлено в таблице 2.

Таблица 2 - Классификация анионов

Обычно сначала проводят исследование объекта на катионы. Из отдельных проб раствора при помощи групповых реактивов определяется, катионы каких аналитических групп присутствуют в растворе, а затем уже определяют в нём анионы.

1.3 Ход определения состава неизвестного образца

Для анализа выдано вещество представляющее собой смесь двух солей (пробирка №13). В состав солей по условию могут входить только следующие ионы:

1. К + ,Na + ,NH 4 +

4. Zn 2+ ,Al 3+ ,Cr 3+

5.Mg 2+ ,Fe 2+ ,Fe 3+

6. Cu 2+ ,Co 2+ ,Ni 2+

1. SO 4 2- , SO 3 2- ,СO 3 2- , РO 4 2-

3. NO 3 - , NO 2 - ,CH 3 COO -

Анализ вещества проводится в соответствии со схемой, описанной в пункте 1.2.

Предварительные испытания

Выданное вещество представляет собой мелкозернистую смесь бесцветных кристаллов и крупинок. По окраске вещества можно предположить, что в нем отсутствуют катионы Fe 3+ ,Cr 2+ , Cu 2+ ,Co 2+ ,Ni 2+ .

Окрашивание пламени

Нихромовую проволоку смоченную в разбавленной соляной кислоте прокаливаем в пламени горелки, затем охлаждаем до комнатной температуры. На подготовленную подобным образом проволоку помещаем несколько кристалликов анализируемого вещества. Пламя горелки окрашивается в бледно-голубой цвет, что свидетельствует о возможном наличии в анализируемом веществе катиона Pb 2+ и отсутствии катионов К + , Ba 2+ ,Ca 2+ , Cu 2+

Испытание на продукты термического разложения

Небольшую порцию анализируемого вещества помещаем на дно тугоплавкой пробирки и нагреваем в пламени горелки. Наблюдаем выделение желтых паров, на основании этого можно сделать предположение о возможном наличии в анализируемом образце нитратов. Уравнения(1,2) образования этих веществ приведены ниже:

Разложение нитратов:

а) от щелочно-земельных до меди (включительно)

Me(NO 3) 2 > 2MeO + + 2NO 2 + O 2 (1)

б) нитратов серебра, ртути и др.

2MeNO 3 >2Me + 2NO 2 + O 2 (2)

Отсутствие темного налета на стенках холодной части пробирки также указывает на отсутствие йодидов в присутствии окислителей.

Вывод: в анализируемом веществе, возможно, присутствуют нитраты и отсутствуют йодсодержащие ионы.

Действие разбавленной серной кислоты

К небольшому количеству выданного вещества добавляем несколько капель разбавленной H 2 SO 4 и нагреваем в пламени горелки. Выделяется газ с характерным запахом уксуса.

Химизм процесса приведен ниже (уравнение (3)):

CH 3 COO - + H + > CH 3 COOH^ (3)

Следовательно, в анализируемом веществе, возможно, присутствует анион CH 3 COO - .

Действие концентрированной серной кислоты

К небольшой массе анализируемого образца медленно добавляем концентрированную серную кислоту. Выделяются бесцветные пары с характерным запахом уксусной кислоты, что еще раз подтверждает наличие в анализируемом образце аниона CH 3 COO -

Выделения паров с характерным запахом хлора и фиолетовых паров йода в соответствии с уравнениями (4-6):

Cl - + H + > HCl^ (4)

2Cl - + SO 4 2- + 2H + > Cl 2 ^ + SO 3 2- + H 2 O (5)

2J - + H 2 SO 4 > J 2 + SO 3 2- + H 2 O (6)

не наблюдаем, следовательно, в анализируемом веществе, возможно, отсутствуют анионы Cl - ,I - .

Проба на присутствие окислителей

Берем смесь Н 2 SO 4 с KI , добавляем несколько кристаллов анализируемого вещества. Выделения свободного йода, который вызывает окрашивание раствора в бурый цвет в соответствии с уравнениями (7-9)не происходит, на основании чего можно сделать предположение об отсутствии в данном веществе анионов NO 2 - , Fe 3+ , Cu 2+

Химизм процесса:

2J - + 2NO 2 - + 4H + > J 2 + 2NO + 2H 2 O (7)

2J - + 2Fe 3+ > J 2 + 2Fe 2+ (8)

4J - + 2Cu 2+ > J 2 + 2CuJv (9)

Проба на присутствие восстановителей

К небольшой порции анализируемого вещества добавляем смесь разбавленных растворов KMnO 4 +H 2 SO 4 . Обесцвечивание раствора в соответствии с ниже приведенным уравнениями (10-14) не наблюдаем,что свидетельствует о возможном отсутствии в анализируемом образце

NO 2 - , SO 3 2- , J - , Cl - , Fe 2+

2J - + 2NO 2 - + 4H + > J 2 + 2NO + 2H 2 O (10)

5SO 3 2- + 2MnO 4 - + 6H + > 5SO 4 2- + 2Mn 2+ + 3H 2 O (11)

16H + + 10J - + 2MnO 4 - > 5J 2 + 2Mn 2+ + 8H 2 O (12)

16H + + 10Cl - + 2MnO 4 - > 5Cl 2 + 2Mn 2+ + 8H 2 O (13)

5Fe 2+ + MnO 4 - + 8H + > 5Fe 3+ + Mn 2+ + 4H 2 O (14)

Растворение в воде

Анализируемое вещество полностью растворяется в воде. На основании этого можно сделать предположение об одновременном нахождении в растворе ионов Ag, Pb 2+ ,CH 3 COO - ,NO 3 - (поскольку только с этими анионами, открытый в предварительных испытания катион свинца, полностью растворяется в воде).

Проба на присутствие NH 4

В анализируемую смесь добавляем несколько капель едкого натра и нагреваем в пламени газовой горелки, запаха аммиака не чувствуется следовательно анион NH 4 + отсутствует.

Проба на Fe 2+

В пробирку с анализируемым веществом вносим несколько капель раствора HCl и раствор красной кровяной соли K 3 синего окрашивания раствора в соответствии с нижеприведенным уравнением (15) не наблюдаем, следовательно, катион Fe 2+ отсутствует.

3- + Fe 2+ >Fe 3 2 (15)

Проба на Fe 3+

В пробирку с раствором анализируемого вещества прибавляем несколько капель воды и несколько капель концентрированного раствора роданида аммония. Кроваво-красного окрашивания в соответствии с уравнением (16) не наблюдаем, следовательно, катион Fe 3+ отсутствует.

Fe 3+ +3CNS - >Fe(CNS) 3 (16)

Вывод: по результатам предварительным испытаний можем сделать предположение о присутствии в анализируемой смеси следующих ионов: Pb 2+ ,CH 3 COO - ,NO 3 -

Систематический анализ

Проба на катионы

Проба на катионы второй аналитической группы

К анализируемому образцу добавляем, несколько капель соляной кислоты HCl наблюдаем, выпадение осадка в соответствии с уравнениями(17,18), что подтверждает возможное присутствие в данном веществе катионов Pb 2+ ,Ag +

Химизм процесса:

Pb 2+ +2HCl>PbCl 2 v (17)

Ag + +HCl>AgClv (18)

Проверим образовавшийся осадок на растворение в горячей воде. Добавим к полученному осадку немного горячей воды. Осадок растворяется, следовательно, катион Ag 2+ отсутствует.

Для того, чтобы точно удостовериться в присутствии в анализируемом образце катиона Pb 2+ проведем следующий опыт. К нескольким каплям раствора анализируемого вещества добавим такое же количество KI. Выпадает желтый осадок (уравнение (19)).

Pb 2+ +2KI>PbI 2 v +2K + (19)

В пробирку прибавляем несколько капель воды и 2М раствора СН 3 СООН, нагреваем, при этом осадок растворяется. Погружаем пробирку в холодную воду. Выпадают блестящие золотистые кристаллы в соответствии с уравнением (20).

PbI 2 v + CH 3 COOH> I+HI. (20)

Таким образом доказали наличие в анализируемом веществе катиона свинца, что согласуется с предварительными испытаниями (проба на окрашивание пламени).

Поскольку катион свинца мешает открытию катионов третьей и первой аналитических групп, необходимо его отделить. Для этого к раствору анализируемого вещества добавим несколько капель 10н HCl, перемешиваем стеклянной палочкой и фильтруем. Промоем осадок водой подкисленной 2н. раствором соляной кислоты (для понижения растворимости хлорида свинца). Фильтрат №1 возможно содержит следующие катионы Ca 2+ ,Ba 2+ ,K + ,Na + ,а также небольшое количество уже открытого катиона Pb 2+ .Затем к фильтрату добавляем несколько капель раствора сульфата аммония (NH 4) 2 SO 4 , нагреваем на кипящей водяной бане несколько минут, даем, немного постоять, и снова фильтруем. Фильтрат№2 возможно содержит катионы К + , Na + , Ca 2+ .Осадок, содержащий Pb 2+ и возможно содержащий катионы Ba 2+ , Ca 2+ обрабатываем, горячим 30% раствором CH 3 COONH 4 до полного удаления PbSO 4 , фильтруем, осадок промываем дистиллированной водой и переносим в фарфоровую чашку, добавляем несколько миллилитров раствора карбоната калия K 2 CO 3 кипятим несколько минут, нагревая на асбестовой сетке в пламени газовой горелки. После охлаждения в фарфоровую чашку добавляем несколько миллилитров воды, перемешиваем, даем отстояться и прозрачный слой жидкости сливаем. Затем снова добавим карбонат калия K 2 CO 3 , опять нагреваем несколько минут, и фильтруем. Осадок промываем теплой водой до полного удаления анионов SO 4 2- . Осадок растворяем в пробирке в небольшой порции уксусной кислоты и промываем небольшим количеством дистиллированной воды. Далее проведем анализ на присутствие катиона Ва 2+ , для этого к полученному раствору прибавим несколько капель раствора хромата калия K 2 CrO 4 осадка не образуется следовательно катион Ва 2+ отсутствует. Проверим полученный раствор на наличие катиона Ca 2+ , добавим карбонат натрия, перемешаем стеклянной палочкой, образования осадка не наблюдаем, следовательно, катион Ca 2+ отсутствует. Проверим фильтрат№2 на наличие катиона К + для этого к фильтрату добавим раствор Na 3 и немного уксусной кислоты, желтого осадка комплексной соли кобальта не образуется следовательно катион К + отсутствует. Проверим фильтрат № 2 на присутствие катиона Na + , добавим несколько капель раствора KH 2 SbO 4 ,белого кристаллического осадка не образуется, следовательно катион Na + отсутствует. Для открытия катионов четвертой, пятой и шестой аналитических групп, к фильтрату, оставленному после отделения свинца добавим гидроокись натрия образования осадка не наблюдаем следовательно в анализируемой смеси отсутствуют катионы: Cu 2+ ,Zn 2+ ,Al 3+ ,

Mg 2+ ,Cr 3+ ,Ni 2+ ,Co 2+

Проба на анионы

Присутствие катиона Pb 2+ исключает наличие в анализируемом веществе анионов первой и второй аналитических групп, в противном случае при растворении в воде наблюдалось бы выпадение осадка.

Несмотря на то, что в предварительных испытаниях мы не делали предположение о присутствии аниона NO 2 - , проверим анализируемую смесь на присутствие данного аниона. Добавим к раствору анализируемой смеси несколько капель раствора Грисса-Илосвая, красного окрашивания раствора не наблюдаем, следовательно анион NO 2 - действительно в данной смеси отсутствует.

Качественные реакции на анионы третьей аналитической группы

Подтвердим присутствие в анализируемом веществе аниона NO 3- . Проведем следующую реакцию: к нескольким каплям раствора неизвестного вещества прибавим 2-3 капли дефениламина и 5 капель концентрированной серной кислоты. Наблюдается темно-синяя окраска образующегося дифенилбензидина (уравнение (21)):

2(C 6 H 5) 2 NHC 6 H 5 -N -C 6 H 4 -C 6 H 4 -NH-C 6 H 5 C 6 H 5 -N= C 6 H 4 = C 6 H 4 =N- C 6 H 5 (21)

По условию задачи в выданной смеси могут присутствовать два аниона. По результатам предварительных испытаний присутствие анионов NO 2 - , SO 4 2- , CO 3 2- , SO 3 2- , PO 4 3- , Cl - , I - - исключили, следовательно, в анализируемой смеси присутствует анион CH 3 COO - , наличие которого подтверждает выделение паров уксуса при действии разбавленной серной кислоты (предварительные испытания уравнение (3) ).

На основе вышеперечисленных опытов можно сделать вывод о присутствии в анализируемой смеси катиона Pb 2+ и анионов CH 3 COO - ,NO 3 - .

Проанализировав, экспериментальные данные и предварительные наблюдения, приходим к выводу, что данная смесь состоит из двух солей Pb(NO 3) 2 и (CH 3 COO) 2 Pb.

Проанализируем физические свойства этих соединений.

Ацетат свинца(II) Рb(ОСОСН 3) 2 - бесцветные кристаллы; т. пл. 280 °С; -- 960,90 кДж/моль; при плавлении частично испаряется, при более высоких температурах разлагается до Рb, СО 2 , Н 2 О и ацетона. Растворимость в воде (г в 100 г): 29,3 (10 °С), 55,2 (25 °С) и 221,0 (50 °С);

Нитрат свинца Pb(NO 3) 2 , бесцветные кристаллы. При нагревании выше 200°С начинает разлагаться без плавления с выделением NО 2 и О 2 и последовательным образованием оксонитратов Pb(NO 3) 2 2РbО, Pb(NO 3) 2 , 5РbО и оксида РbО при 500-550 °С. Растворимость в воде (г в 100 г):45,5 (10°С), 58,5 (25°С), 91,6 (60°С) и 116,4 (80°С).

Действительно, выданное вещество, предположительно состоящее из солей Pb(NO 3) 2 и (CH 3 COO) 2 Pb представляет собой смесь бесцветных кристаллов, что согласуется с вышеприведенными справочными данными. Пламя горелки (при проведении пробы на окрашивание племени) окрашивается в бледно-голубой цвет, что свидетельствует о наличии в выданном образце свинца. При прокаливании анализируемое вещество разлагается с выделением желтых паров, соответствующих уравнению(22), это подтверждает наличие в данной смеси нитрата свинца.

Pb(NO 3) 2 > 2PbO + 2NO 2 + O 2 (22)

При действии разбавленной серной кислоты на сухой образец наблюдали выделение паров с характерным запахом уксуса, следовательно, в данной смеси присутствует ацетат свинца. Таким образом, сопоставив справочные данные , результаты предварительных наблюдений и экспериментальные данные приходим к выводу, что сделанное ранее предположение о составе смеси подтверждается.

неизвестный образец серная кислота реакция

2. Расчет теоретической кривой титрования

2.1 Теоретические основы титриметрического анализа

Титриметрический анализ основан на измерении количества (объема или массы) раствора титранта (реактива точно известной концентрации), затраченного на реакцию с определяемым компонентом. Раствор реактива вносят до тех пор, пока его количество не будет эквивалентным количеству определяемого вещества. Применяемый в титриметрическом анализе раствор реактива называют титрованным или стандартным. концентрацию растворов в титриметрическом анализе выражают числом грамм-эквивалентов в литре раствора.

Титриметрические методы подразделяются на две большие группы. В первую группу входят методы, основанные на ионных реакциях: нейтрализация, осаждение и комплексообразование. Во вторую группу входят окислительно-восстановительные методы, основанные на реакциях окисления-восстановления, которые связаны с переходом электронов от одной частицы к другой. Применяемые реакции должны удовлетворять ряду требований. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Реакция должна протекать с достаточной скоростью, поэтому необходимо создать оптимальные условия, обеспечивающие быстрое течение реакции. Установление точки эквивалентности должно производиться достаточно надежно.

Методы нейтрализации. К ним относятся определения, основанные на взаимодействии кислот и щелочей. Методы нейтрализации обычно подразделяют на ацидиметрию (определение оснований), алкалиметрию (определение кислот) и галометрию (определение солей).

Методы осаждения подразделяют на аргентометрию, позволяющую определять путем титрования раствором нитрата серебра, хлориды, иодиды, цианиды, роданиды; на меркурометрию, основанную на титровании раствором нитрата закисной ртути.

Методы комплексообразования основаны на применении реакций, при которых образуются комплексные соединения. Они подразделяются на меркуриметрию, основанную на титровании раствором нитрата ртути(II) при этом образуется малодиссоциированный хлорид ртути (II), комплексонометрию, основанную на применении органических реактивов-комплесонов; фторометрию, основанную на применении NaF.

Методы окисления-восстановления основаны на применении различных окислителей и восстановителей для титрования.

Перманганатометрия. Метод предложен в 1846г. Ф.Маргериттом для титрования растворов солей железа (II).

Броматометрия- метод основанный на окислении раствором KBrO 3 в кислой среде. Цериметрия.1861г. Л.Ланге предложил в качестве окислителя раствор Ce(SO 4) 2. сульфат церия применяется для титрования многих восстановителей в сильнокислых растворах солей железа(II), мышьяковистой, щавелевой кислот и д.р.

Титанометрия. Соли титана(III) применяются как энергичные восстановители при определении главным образом органических веществ.

Нитритометрия основана на титровании стандартным раствором нитрита натрия. Наиболее часто нитритометрию применяют для определения органических веществ по реакции диазотирования или нитрозирования.

Аскорбинометрия основана на использовании аскорбиновой кислоты как восстановителя. Ее применяют для прямого титрования различных окислителей.

2.2 Комплексонометрическое титрование

Комплексонометрия (хелатометрия), титриметрический метод анализа, основанный на образовании прочных внутрикомплексных соединений (хелатов) между катионами металлов и комплексонами. наиболее часто применяют иминодиуксусную, нитрилотриуксусную (комплексон I) и этилендиаминтетрауксусную (комплексон II) кислоты, динатриевую соль последней (комплексон III, ЭДТА), а также 1,2-диаминоциклогексантетрауксусную кислоту (комплексон IV). Широкое использование комплексонов II и III обусловлено тем, что их реакции с катионами металлов протекают полно и в соответствии со стехиометрией, их растворы устойчивы при хранении; эти реагенты доступны и можно получить их препараты высокой чистоты. Конечную точку титрования устанавливают визуально по изменению окраски комплексонометрических индикаторов (металлоиндикаторов), а также потенциометрически, фотометрически, амперометрически или др. методами.

Комплексоны - неизбирательные реагенты. Селективность комплексонов повышают различными приемами: уменьшением рН среды, выделением (осаждением, экстракцией) определяемого иона, маскированием, изменением степени окисления катиона и т.д. .

Практическое применение

Высокая устойчивость координационных соединений металлов с Y 4- открывает принципиальную возможность титриметрического определения большой группы катионов. Различные способы комплесонометрического титрования могут быть следующим: прямое, обратное, по методу вытеснения и д.р.

При прямом титровании к раствору исследуемого иона небольшими порциями добавляют стандартный раствор комплексона. Значение рН при титровании должно быть больше 7. Но это может вызвать выпадение гидроокисей металлов. Для предупреждения применяют аммиачный буфер (для никеля, меди, цинка и кадмия) и еще добавляют тартраты или цитраты (для марганца и свинца). Так как в точке эквивалентности концентрация определяемого иона резко уменьшается, то эту точку нужно фиксировать по изменению окраски индикатора, образующего внутрикомплексное соединение с катионом металла. Индикатор реагирует на изменение показателя концентрации катиона металла рМе аналогично тому, как рН индикатор реагирует на изменение рН. Таким образом, определяют ионы Са, Sr, Ba, Cu, Mg, Mn, Zn и др. До комплексонометрического метода не существовало достаточно надежных методов анализа соединений содержащих эти металлы.

Обратное титрование применяют тогда, когда рН, необходимое для образования комплекса, вызывает осаждение определяемого металла, а также при отсутствии надежного индикатора на ион металла. Титрованный раствор ЭДТА добавляют в небольшом избытке к раствору анализируемой соли. Устанавливают, вводя буферный раствор, нужный рН. Избыток ЭДТА оттитровывают раствором хлорида магния или хлорида цинка. Точка эквивалентности фиксируется по изменению окраски индикатора. Обратное титрование применяют также. Когда ион металла взаимодействует с ЭДТА или метало индикатором замедленно, например в случае иона никеля. Этот метод применяют в случае, когда прямое титрование невозможно вследствие образования малорастворимых осадков катионов металлов с присутствующими в растворе анионами, например PbSO 4 ,CaC 2 O 4 ·2H 2 O. Осадки в процессе титрования должны раствориться.

Титрование путем вытеснения одного катиона другим применяют в том случае, когда не удается подобрать соответствующего индикатора для определяемого иона или же когда катион металла при заданном рН не может быть переведен из осадка в раствор. В этом случае можно соединение с комплексоном получить обменной реакцией при титровании соли определяемого металла раствором соединения какого-либо другого металла с ЭДТА. Например, титруют раствором комплексоната магния или цинка. Для применения этого метода необходимо, чтобы образующееся соединение определяемого металла с комплексоном было прочнее, чем комплексонат магния или цинка. В настоящее время комплексонометрические методики разработаны для анализа очень многих объектов.

Определение жесткости воды было первым практически важным применением ЭДТА в аналитической химии.

Жесткость воды характеризуют молярной концентрацией эквивалентов кальция и магния.

Комплексонометрическое титрование используют также для анализа различных сплавов, определения сульфатов, фосфатов и других анионов, для анализа органических соединений.

Физико-химические методы установления точки эквивалентности в комплексонометрии

Различные физико-химические методы обычно используют для установления оптимальных условий титрования.

Кроме того, с помощью физико-химических методов можно проводить определения элементов, для которых еще не найдены цветные индикаторы.

Потенциометрическое титрование комплексоном выполняют с помощью ионоселективных электродов или используют инертные электроды из благородных металлов, реагирующие на изменения окислительно-восстановительного потенциала системы.

С помощью биметаллической пары электродов платина-вольфрам можно титриметрически определить свинец, медь, цинк, никель, кадмий и другие элементы.

Широко применяют амперометрическое титрование ЭДТА для определения никеля, цинка, кадмия, свинца.

Используют кондуктометрическое, фотометрическое, термометрическое и другие виды титрования комплексоном с физико-химической индикацией точки эквивалентности.

2.3 Расчет кривой титрования методом комплексонометрии

Оценить возможность титриметрического определения и построить кривую титрования для следующих данных 0,05М ZnCl 2 0,025M Na 2 H 2 Y, pH 9, концентрация аммиака 0,1 моль/л.

Запишем уравнение титриметрической реакции:

Zn 2+ + H 2 Y 2- >ZnY 2- +2H +

Расчет кривой титрования сводится к расчету показательной концентрации Zn 2+ в зависимости от объема титранта. Устойчивость ZnY 2- зависит от кислотности среды (чем выше кислотность, тем ниже устойчивость), в связи с этим для связывания ионов водорода, количественное определение ZnCl 2 проводят в среде аммонийного буфера.

Рассчитаем объем титранта по закону эквивалентов:

Наличие иона Н + в среде, где присутствует трилон В, приводит к протеканию следующих конкурирующих реакций:

Y 4- +H + HY 3- , = K 4 ;

HY 3- +H + H 2 Y 2- , = K 3 ;

H 2 Y 2- +H + H 3 Y - , = K 2 ;

H 3 Y - +H + H 4 Y , = K 1 ;

где K 1 , K 2 , K 3 , K 4 - константы ступенчатой диссоциации H 4 Y (K 1 =1,0 . 10 -2 , K 2 =2,1 . 10 -3 , K 3 =6,9 . 10 -7 , K 4 =5,5 . 10 -11).

Рассчитаем условную константу устойчивости, которая выражает прочность комплексов цинка с трилоном В:

Рассчитаем коэффициенты конкурирующих реакций:

Zn 2+ участвует также в конкурирующих реакциях образования комплексных соединений с аммиаком NH 3 в соответствии со следующими уравнениями реакций:

Zn 2 + +NH 3 Zn(NH 3) 2+ ,

Zn 2 + +2NH 3 Zn(NH 3) 2 2+ ,

Zn 2+ +3NH 3 Zn(NH 3) 3 2+ ,

Zn 2+ +4NH 3 Zn(NH 3) 4 2+ ,

По данным литературного источника

Подставив, выражения (4) и (5) в уравнение константы устойчивости (3) получим:

1) до начала титрования, в отсутствии конкурирующих реакций с участием цинка, концентрация ионов Zn 2+ равна концентрации соли ZnCl 2

ZnCl 2 >Zn 2+ +2Cl -

C=0.05 моль/л

2)до точки эквивалентности величина pZn определяется концентрацией неоттитрованного иона цинка уравнение (а), так диссоциацией комплексоната, образующегося по уравнению(б) при избытке ионов цинка можно пренебречь.

а)Zn 2 + +H 2 Y 2- > ZnY 2- +2H +

б)ZnY 2- -Zn 2 + +Y 4- .

Проведем расчет для точек

3) В точке эквивалентности расчет концентрации ионов Zn 2 + проводится с учетом уравнения реакции диссоциации комплекса:

ZnY 2- -Zn 2+ +Y 4-

Данное равновесие количественно описывается константой:

1,8 10 -5

4)после точки эквивалентности концентрация комплексоната металла остается постоянной

Концентрация ионов лиганда определяется избытком добавленного титранта:

Для найденных значений и вычисляются значения pZn 2+ и pY 4- и строится кривая титрования в координатах pZn 2+ - V титранта. Проводится анализ кривой титрования, рассчитывается скачок титрования, выбирается индикатор.

В таблице 3 представлены данные расчета изменений концентрации ионов определяемого вещества и титранта в зависимости от объема добавляемого титранта (при условии что объем раствора в процессе титрования не изменяется).

Таблица 3-Изменение pZn при титровании трилоном Б.

Проанализируем полученную кривую. Как видно, в области точки эквивалентности происходит резкое изменение концентрации ионов цинка, которое можно отметить с помощью соответствующего индикатора. Скачок титрования составляет pZn 2+ =6.5-3,6=2,9, то есть величину достаточную для фиксирования точки эквивалентности. На основании этого можно сделать вывод о возможности комплексонометрического определения цинка в области заданных концентраций.

Индикаторами в комплексонометрии являются металлоидикаторы, образующие с ионами металлов интенсивно окрашенные соединения, константы устойчивости которых, однако, ниже чем константы бесцветных комплексов трилона Б с ионами металлов .

Подбор индикатора осуществляется в соответствии с условиями титрования, описанными в справочнике Лурье . Сопоставив условия титрования, представленные в задаче, с данными из справочника , приходим к заключению что,в данном случае индикатором является 0,1% водный раствор кислотный хром синий К, обеспечивающий переход окраски из розовой в серо-голубую.

2.4 Определение анионного состава сточных вод

В подавляющем большинстве случаев солевой состав природных вод определяется катионами Са 2+ , Мg 2+ , Nа + , К + и анионами НСO 3 - , Сl - , SO 4 2- . Эти ионы называются главными ионами воды или макрокомпонентами; они определяют химический тип воды. Остальные ионы присутствуют в значительно меньших количествах и называются микрокомпонентами; они не определяют химический тип воды.

По преобладающему аниону воды делятся на три класса: гидрокарбонатные, сульфатные и хлоридные. Воды каждого класса делятся, в свою очередь, по преобладающему катиону на три группы: кальциевую, магниевую и натриевую.

В природных водах присутствуют также растворенные газы. В основном это газы, которые диффундируют в воды из атмосферы воздуха, такие как кислород, углекислый газ, азот. Но в то же время в подземных водах или водах нецентрализованных источников водоснабжения, в минеральных и термальных водах могут присутствовать сероводород, радиоактивный газ радон, а также инертные и другие газы.

Существует несколько методов определения анионного состава воды.

Метод комплексонометрического титрования

Определение многих анионов основано на осаждении их малорастворимых соединений титрованным раствором какого-либо катиона, избыток которого затем оттитровывается ЭДТА. Сульфат по этой методике осаждают в виде BaSO 4 хлоридом бария и последующим комплексонометрическим титрованием избытка ионов Ba 2+ по специальной методике. Фосфат осаждают в виде MgNH 4 PO 4 и оставшееся в растворе количество магния определяют комплексонометрически.

Хроматография

Ионная хроматография - метод качественного и количественного определения ионов в растворах. Он позволяет определять неорганические и органические анионы, катионы щелочных и щелочноземельных металлов, катионы переходных металлов, амины и другие органические соединения в ионной форме. Во всем мире ионная хроматография используется чаще других методов, обеспечивая выявление множества компонентов в любой воде. Для проведения анализов используются ионные хроматографы. Основным элементом любого хроматографа является разделяющая аналитическая колонка. Анализ таких неорганических анионов, как фторид, хлорид, нитрит, нитрат, сульфат и фосфат, методом ионной хроматографии многие годы является самым распространенным во всем мире. Кроме ионохроматографических колонок для определения основных не органических анионов разработаны и успешно применяются высокоэффективные колонки, наряду со стандартными анионами они выявляют и оксианионы такие как оксихалиды: хлорит, хлорат, бромат и др.

Аргентометрия.

Аргентометрия (от лат. argentum - серебро и греч. metreo - измеряю), титриметрический метод определения анионов (Hal - , CN - , PO 4 3- , CrO 4 2- и др.), образующих малорастворимые соединения или устойчивые комплексы с ионами Ag + Исследуемый раствор титруют стандартным раствором AgNO3 или избыток последнего, введенный в анализируемый раствор, оттитровывают стандартным раствором NaCl (т. наз. обратное титрование).

Подобные документы

    Теоретические сведения по качественному анализу. Методы анализа неизвестного образца. Основы титриметрического анализа. Комплексонометрическое титрование, расчет кривой титрования методом комплексонометрии. Определение анионного состава сточных вод.

    курсовая работа , добавлен 22.01.2011

    Практическое значение аналитической химии. Химические, физико-химические и физические методы анализа. Подготовка неизвестного вещества к химическому анализу. Задачи качественного анализа. Этапы систематического анализа. Обнаружение катионов и анионов.

    реферат , добавлен 05.10.2011

    Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация , добавлен 12.12.2010

    Понятие количественного и качественного состава в аналитической химии. Влияние количества вещества на род анализа. Химические, физические, физико-химические, биологические методы определения его состава. Методы и основные этапы химического анализа.

    презентация , добавлен 01.09.2016

    Проведение анализа вещества для установление качественного или количественного его состава. Химические, физические и физико-химические методы разделения и определения структурных составляющих гетерогенных систем. Статистическая обработка результатов.

    реферат , добавлен 19.10.2015

    Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.

    дипломная работа , добавлен 24.10.2011

    Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация , добавлен 27.04.2015

    Понятие анализа в химии. Виды, этапы анализа и методы: химические (маскирование, осаждение, соосаждение), физические (отгонка, дисцилляция, сублимация) и физико-химические (экстракция, сорбция, ионный обмен, хроматография, электролиз, электрофорез).

    реферат , добавлен 23.01.2009

    Задачи и методы качественного и количественного анализа. Аналитическая система катионов. Закон действующих масс. Теория электролитической диссоциации. Окислительно-восстановительные реакции. Характеристика комплексных соединений. Буферные растворы.

    курс лекций , добавлен 15.12.2011

    Сущность и предмет аналитической химии как науки. Задачи и методы качественного и количественного анализа химических веществ. Примеры качественных реакций на катионы. Характеристика явлений, сопровождающих реакции мокрым (в растворах) и сухим путями.

Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделение компонентов, обнаружения (идентификация) и определения.

Практически все методы основаны на зависимости между составом вещества и его свойствами. Для обнаружения компонента или его количества измеряют аналитический сигнал .

Аналитический сигнал – это среднее из измерений физической величены на заключительной стадии анализа. Аналитический сигнал функционально связан с содержанием определяемого компонента. Эта может быть сила тока, ЭДС системы, оптическая плотность, интенсивность излучения и т.д.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала – появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определенном количестве компонента измеряется величина аналитического сигнала: масса осадка, сила тока, интенсивность линий спектра и т.д. Затем рассчитывается содержание компонента с использованием функциональной зависимости аналитический сигнал – содержание: y=f(c), которая устанавливается расчетным или опытным путем и может быть представлена в виде формулы, таблицы или графика.

В аналитической химии различают химические, физические и физико-химические методы анализа.

В химических методах анализа определяемый элемент или ион переводят в какое – либо соединение, обладающее тем или иным характерными свойствами, на основании которых можно установить, что образовалось именно это соединение.

Химические методы анализа имеют определенную область применения. Также и скорость выполнения анализов с помощью химических методов не всегда удовлетворяет нужды производства, где очень важно получить анализы своевременно, пока еще можно регулировать технологический процесс. Поэтому наряду с химическими получают все большее распространение физические и физико-химические методы анализа.

Физические методы анализа основаны на измерении какого-либо

параметра системы, который является функцией состава, например, эмиссионных спектров поглощения, электро- или теплопроводности, потенциала электрода, погруженного в раствор, диэлектрической проницаемости, показателя преломления, ядерного магнитного резонанса и т.д.

Физические методы анализа дают возможность решать вопросы, которые нельзя разрешить методами химического анализа.

Для анализа веществ широко используются физико-химические методы анализа, основанные на химических реакциях, протекание которых сопровождается изменением физических свойств анализируемой системы, например, её цвет, интенсивность окраски, прозрачность, величины тепло- и электропроводимости и т.д.

Физико-химические методы анализа отличаются высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются незаменимым при анализе малых количеств веществ.

Следует отметить, что между физическими и физико-химическими методами анализа не всегда можно провести строгую границу. Иногда их объединяют под общим названием «инструментальные» методы, т.к. для выполнения тех или иных измерений требуются приборы, позволяющие с большой точностью измерить значения определённых параметров, характеризующих те или иные свойства вещества.

ВВЕДЕНИЕ

Предмет и задачи современной аналитической химии. Значение аналитической химии в развитии различных областей естествознания. Представление о дифференциации и интеграции естественных наук. Химия и геология. Законы химии и их значение для наук о земле. Роль аналитической химии в решении проблем геологии, геохимии, космических исследований: определение вещественного состава Земли, земной коры, изучение геологических процессов внешней динамики и геологической деятельности природных вод и др.
Современные методы изучения состава веществ. Качественный и количественный анализ неорганических и органических веществ. Химические, физико-химические и физические методы анализа. Характеристики методов и примеры применения их в геологии (геологических исследованиях). Выбор метода определения элемента в объекте в зависимости от его состава и задачи анализа.

I. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АНАЛИТИЧЕСКОЙ ХИМИИ

Химические равновесия в гомогенной системе
Основные виды гомогенных равновесий, применяемых в аналитической химии: кислотно-основное, окислительно-восстановительное, равновесие комплексообразования.
Закон действия масс. Константа равновесия обратимой химической реакции. Понятие об идеальных и реальных системах. Причины отклонения от идеальности. Активность, коэффициент активности, cвязь его с ионной силой. Ионное состояние элементов. Концентрация общая и равновесная. α-коэффициент (мольная доля). Константы термодинамические, реальные, условные, их связь.
Кислотно-основное равновесие . Современные представления о кислотах и основаниях. Протолитическая теория Бренстеда-Лоури. Кислотно-основные пары, константы кислотности и основности, их связь. Процессы ионизации и диссоциации.
Типы растворителей, реакция автопротолиза. Ионное произведение растворителя. Нивелирующий и дифференцирующий эффекты растворителей.
Расчет рН в растворах кислот, оснований и амфолитов. Буферные растворы и их свойства.
Равновесие комплексообразования. Классификация комплексных соединений. Хелаты, внутрикомплексные соединения. изменения потенциала окислительно - восстановительной системы. Количественные характеристики устойчивости комплексных соединений - общие и ступенчатые константы устойчивости. Типы комплексных соединений, используемых в аналитической химии и их характеристики. Использование комплексообразования для обнаружения, разделения, маскирования и демаскирования ионов, растворения осадков,
Теоретические основы взаимодействия органических реагентов с неорганическими ионами. Функционально-аналитические группы, хромофорные группы. Правило циклообразования Л.А.Чугаева. Основные факторы, влияющие на устойчивость хелатов: природа иона металла, основность и дентатность лиганда, пространственный фактор и т.д.
Основные направления использования органических реагентов в химическом анализе (обнаружение, определение и маскирование ионов). Наиболее распространенные органические реагенты: диметилглиоксим, 8-гидроксихинолин и др.
Комплексоны. Общие свойства комплексонов и комплексонатов. Основные направления использования двунатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА) для обнаружения, маскирования и количественного определения ионов.
Окислительно-восстановительное равновесие. Обратимые и необратимые окислительно-восстановительные системы. Равновесный электродный потенциал. Уравнение Нернста. Стандартный потенциал окислительно - восстановительной системы. Понятие о реальном (формальном) потенциале системы. Факторы, влияющие на величину формального потенциала. Направление реакций окисления - восстановления. Константы равновесия окислительно - восстановительных реакций. Связь константы равновесия со стандартными потенциалами.
Скорость окислительно-восстановительных реакций. Каталитические, индуциро-ванные реакции в окислительно - восстановительных процессах. Основные окислители и восстановители, используемые в анализе.
Окислительно-восстановительные реакции в процессах внешней динамики при образовании осадочных и метаморфических горных пород.

Равновесие в гетерогенной системе

Равновесие в системе твердая фаза - раствор. Реакции осаждения - растворения в аналитической химии. Термодинамическая константа равновесия реакции осаждения - растворения (термодинамическое произведение растворимости). Влияние условий на состояние равновесия реакции осаждения - растворения (реальное и условное произведения растворимости). Использование правила произведения растворимости в аналитической химии.
Условия образования и растворения осадков. Кристаллические и аморфные осадки. Зависимость структуры осадка от природы и условий осаждения. Коллоидное состояние как промежуточная стадия образования осадка. Чистота осадков. Соосаждение. Использование этого явления для концентрирования микропримесей. Закон В.Г. Хлопина. Явление изоморфизма в силикатах и других минералах.
Расчет растворимости в различных условиях (влияние рН, комплексообразования, реакций окисления - восстановления, ионной силы раствора и температуры). Влияние одноименного иона. Солевой эффект.
Равновесие между двумя жидкими фазами. Экстракция и ее использование в аналитической химии. Закон распределения. Коэффициент распределения. Константы равновесия в системе жидкость - жидкость (константа экстракции). Использование экстракции в практике химического анализа.

Подготовка образца к анализу и проведение анализа.

Предварительные макро - и микроскопические исследования. Отбор пробы для анализа однородных и неоднородных веществ, средняя проба.
Выбор схемы и метода анализа в зависимости от состава анализируемого вещества. Разложение анализируемой пробы. Методы переведения в раствор труднорастворимых объектов: растворение в кислотах и щелочах, сплавление с кислыми и щелочными плавнями. Анализ различных объектов: минералов, руд, горных пород, природных и сточных вод, воздуха.

Метрологические основы аналитической химии.

Характеристика аналитических методов. Определение концентрации методом градуировочного графика и методом добавок. Предел обнаружения, нижняя и верхняя границы определяемых концентраций, коэффициент чувствительности, избирательность, время, необходимое для проведения анализа (экспрессность).
Классификация погрешностей. Систематические и случайные ошибки. Правильность и воспроизводимость. Статистическая обработка результатов измерений. Закон нормального распределения случайных величин. Среднее, дисперсия, стандартное отклонение. Оценка правильности. Сравнение дисперсий и средних двух методов анализа. Способы повышения воспроизводимости и правильности анализа.

II. МЕТОДЫ АНАЛИЗА

Методы обнаружения

Задачи и выбор метода обнаружения. Химические, физико-химические и физические методы обнаружения. Качественный анализ. Характеристика аналитических реакций. Селективные и специфические реагенты. Способы понижения предела обнаружения и повышения избирательности: использование комплексообразования, соосаждения, экстракции, флотации и т.д. Применение реакций образования осадка, окрашенных соединений, выделение газа. Микрокристаллоскопический, капельный, люминесцентный, спектральный анализ; анализ растиранием порошков. Использование органических реагентов.
Аналитическая классификация ионов. Кислотно-основная и сероводородная схемы анализа. Систематический и дробный ход анализа. Экспрессный качественный анализ в полевых условиях.

Методы разделения и концентрирования.

Основные методы разделения и концентрирования.
Разделение элементов с использованием реакций осаждения. Применение органических и неорганических реагентов для осаждения. Групповые реагенты и условия их применения. Характеристика малорастворимых соединений, наиболее часто используемых в анализе: карбонатов, хроматов, фосфатов, оксалатов, гидроксидов, сульфидов. Условия образования и растворения сульфидов металлов. Роль процессов осаждения и растворения осадков при изучении законов миграции (концентрирования и рассеяния) элементов в природе.
Хроматографический анализ. Основные принципы метода. Классификация методов хроматографии по агрегатному состоянию фаз, по механизмам разделения и технике выполнения эксперимента. Методы получения хроматограмм.
Важнейшие теоретические положения. Теория теоретических тарелок и кинетическая теория. Основные уравнения хроматографии.
Ионный обмен и ионообменная хроматография. Газовая хроматография. Жидкостная хроматография, распределительная хроматография на бумаге. Использование хроматографии на бумаге для разделения и обнаружения катионов.
Экстракция. Понятия экстрагент, разбавитель, экстракт, реэкстракция. Условия экстракции, количественные характеристики экстракции. Скорость экстракции. Классификация экстракционных систем по типу экстрагирующихся соединений. Способы экстракции. Разделение элементов методом экстракции. Повышение селективности разделения путем подбора органических растворителей, рН, маскирования. Приборы для проведения экстракции.

Химические методы количественного анализа

Гравиметрические методы анализа

Сущность гравиметрического анализа. Прямые и косвенные методы анализа. Важнейшие неорганические и органические осадители. Осаждаемая и гравиметрическая формы. Требования, предъявляемые к осаждаемой и гравиметрической формам. Осаждение, фильтрование и промывание осадков.
Примеры гравиметрических определений (определение кристаллизационной и гигроскопической воды, диоксида углерода, серы, железа, алюминия, бария, кальция, магния, фосфора).
Анализ карбонатной породы: определение суммы полуторных оксидов, определение оксида кальция и оксида магния.

Титриметрические методы анализа.


Основные положения и методы титриметрического анализа.
Требования, предъявляемые к реакциям в титриметрическом анализе. Измерительная посуда. Способы выражения концентраций растворов. Выражение эквивалентных масс в различных методах титриметрического анализа. Титр. Титрование. Точка эквивалентности и конечная точка титрования. Химические и физико - химические методы обнаружения конечной точки титрования.
Первичные и вторичные стандартные растворы. Первичные стандарты и требования, предъявляемые к ним. Фиксаналы. Метод отдельных навесок и метод пипетирования для установления концентрации рабочих растворов. Вычисление результатов анализа.
Кислотно-основное титрование. Сущность метода кислотно-основного титрования. Рабочие растворы. Первичные стандартные растворы кислот и оснований.
Вычисление рН в различные моменты титрования. Кривые титрования сильных и слабых кислот и оснований.
Индикаторы в методе кислотно-основного титрования. Теория индикаторов. Интервал перехода окраски индикатора. Показатель титрования. Выбор индикатора для установления конечной точки титрования. Погрешности титрования.
Практическое применение метода кислотно-основного титрования. Определение устранимой и постоянной жесткости воды. Анализ смеси карбоната и щелочи, карбоната и бикарбоната. Определение солей аммония.
Изменение окислительно- восстановительного потенциала в процессе титрования. Кривая титрования. Факторы, влияющие на скачок титрования. Методы обнаружения конечной точки титрования. Окислительно - восстановительные индикаторы.
Основные окислительно - восстановительные методы титриметрического анализа: иодометрия, перманганатометрия, дихроматометрия. Иодометрическое определение меди (II). Перманганатометрическое определение железа, окисляемости воды. Дихроматометрическое определение железа.
Реакции комплексообразования, применяемые в титриметрии, и требования к ним. Комплексонометрия. Кривая титрования. Факторы, влияющие на величину скачка титрования. Индикаторы в комплексонометрии. Комплексонометрическое определение жесткости воды, кальция, магния.
Метрологические характеристики химических методов количественного анализа.

Физико - химические и физические методы анализа

Основные принципы физико - химических и физических методов анализа. Их краткая характеристика и значение. Классификация методов анализа. Электрохимические и спектроскопические методы. Их роль для геохимического исследования. Анализ без разрушения анализируемого вещества.
Выбор метода анализа в зависимости от поставленной задачи при анализе горных пород, руд и минералов. Анализ горных пород на примеси (масс-спектрометрия, изотопный анализ, рентгеновские методы анализа). Обработка и представление результатов анализа.

Электрохимические методы анализа.

Общая характеристика электрохимических методов анализа. Их классификация. Измерение потенциала. Электрохимическая ячейка. Обратимые и необратимые электрохимические реакции. Чувствительность и селективность электрохимических методов анализа.
Потенциометрия. Прямая потенциометрия. Классификация и характеристики электродов. Индикаторные электроды и электроды сравнения. Ионометрия: основные понятия и принципы метода. Классификация ионоселективных электродов. Коэффициент селективности. Потенциометрическое определение кислотности среды (рН), фторидов нитратов и некоторых других ионов (натрия, калия) с применением ионоселективных электродов. Определение концентрации методом градуировки электрода и методом добавок.
Потенциометрическое титрование. Требования, предъявляемые к химической и электрохимической (индикаторной) реакции. Использование реакций различного типа: кислотно-основных, осаждения, комплексообразования и окисления - восстановления. Индикаторные электроды и электроды сравнения. Принципиальная схема потенциометра, рН-метры. Примеры практического применения (определение смеси кислот, кобальта и др.).
Вольтамперометрия . Полярографический метод анализа. Полярографическая ячейка. Индикаторный электрод и электроды сравнения. Индикаторные электроды в вольтамперометрии. Получение и характеристики полярограммы. Уравнение Ильковича. Уравнение полярографической волны. Потенциал полуволны. Качественный и количественный полярографический анализ. Возможности, достоинства и недостатки полярографического анализа. Современные разновидности полярографии. Примеры практического применения вольтамперометрии для определения основных компонентов и примесей в минералах, рудах, природных водах, и экологических объектах.
Амперометрическое титрование. Сущность метода. Индикаторные электроды. Выбор потенциала индикаторного электрода. Вид кривых титрования. Примеры практического использования.
Кулонометрия . Теоретические основы. Способы определения количества электричества в потенциостатической и гальваностатической кулонометрии. Прямая кулонометрия и кулонометрическое титрование. Определение конечной точки титрования. Электрохимическая генерация титрантов. Практическое применение метода, его достоинства и недостатки. Определение малых количеств кислоты, щелочи, определение окислителей и др.
Метрологические характеристики электрохимических методов анализа.

Спектроскопические методы анализа.

Получение химико-аналитической информации при взаимодействии электромагнитного излучения с веществом. Классификация спектроскопических методов анализа по видам спектров и способам их возбуждения.
Атомная эмиссионная спектроскопия. Эмиссионные спектры. Дуговой и искровой разряд, как источники возбуждения. Плазмотрон, индуктивно связанная плазма. Факторы, влияющие на интенсивность спектральных линий. Практика эмиссионной спектроскопии. Подготовка пробы и введение ее в разряд. Качественный и количественный анализ. Химико - спектральные методы анализа.
Эмиссионная фотометрия пламени. Пламя как источник возбуждения. Процессы, протекающие в пламени. Химические реакции в пламенах. Факторы, влияющие на степень атомизации. Зависимость интенсивности излучения от концентрации элементов в растворе.
Примеры практического применения эмиссионных методов анализа. Определение щелочных и щелочноземельных элементов. Определение следов металлов в горных породах, рудах, минералах, воде. Применение атомно-эмиссионных методов в исследованиях объектов окружающей среды.
Атомно-абсорбционная спектроскопия. Основы метода. Закон поглощения электромагнитного излучения. Способы получения поглощающего слоя атомов (пламенная и электротермическая атомизация). Источники излучения, их характеристики (лампа с полым катодом, лазер). Принцип атомно-абсорбционных измерений. Возможности, преимущества и недостатки метода. Примеры практического применения атомно-абсорбционного метода в геологии.
Молекулярная абсорбционная спектроскопия (спектрофотометрия). Теоретические основы спектрофотометрического анализа. Основные законы светопоглощения. Закон Бугера-Ламберта-Бера. Величины, характеризующие светопоглощение: оптическая плотность и пропускание. Молярный коэффициент поглощения. Понятие об истинном и кажущемся (среднем) молярном коэффициенте поглощения. Причины отклонения от законов поглощения. Способы определения концентраций фотометрическим методом: метод градуировочного графика, метод добавок, метод дифференциальной фотометрии.
Выбор оптимальных условий проведения фотометрической реакции. Этапы фотометрического анализа. Фотометрическое определение некоторых элементов (железа, титана, никеля, фосфора, кремния и т.д.).
Люминесценция. Основные характеристики метода. Различные виды люминесценции и их классификация. Основные закономерности молекулярной люминесценции. Закон Стокса-Ломмеля. Правило зеркальной симметрии спектров поглощения и люминесценции. Примеры практического применения (определение редкоземельных элементов, урана, алюминия и др.).
Метрологические характеристики спектроскопических методов анализа.

III. ПРАКТИЧЕСКИЕ ЗАНЯТИЯ
Методы обнаружения и разделения элементов.

Изучение характерных реакций некоторых катионов и анионов. Разделение и обнаружение катионов с применением методов осаждения - растворения, экстракции и хроматографии на бумаге. Обнаружение основных компонентов и примесей в минералах, горных породах, рудах (контрольная работа).

Методы количественного определения элементов.
Химические методы анализа

Гравиметрические методы анализа. Определение бария и сульфат-иона в образце (контрольная работа).
Варианты работы: Определение кальция. Определение железа. Определение алюминия. Определение полуторных оксидов в карбонатной породе. Определение кристаллизационной воды в минералах.
Титриметрические методы анализа . Кислотно-основное титрование. Приготовление вторичного стандартного раствора щелочи и первичного стандартного раствора щавелевой кислоты. Стандартизация раствора щелочи.
Определение концентрации соляной кислоты. (контрольная работа). Статистическая обработка результатов измерений. Варианты работы: Определение солей аммония.
Комплексонометрическое титрование. Комплексонометрическое определение кальция и магния в карбонатной породе (контрольная работа).
Варианты работы: Комплексонометрическое определение общей жесткости воды.
Окислительно-восстановительное титрование. Иодометрическое определение меди (II) (контрольная работа). Дихроматометрическое определение железа (контрольная работа).

Физико - химические методы анализа.


Потенциометрическое определение кобальта (контрольная работа). Варианты работы: потенциометрическое титрование фосфорной кислоты.
Определение фторид-иона (или отдельных ионов: нитратов, натрия, калия) в природных водах с применением ионоселективного электрода (контрольная работа).
Снятие и расшифровка вольтамперометрического спектра (меди, кадмия, свинца, никеля, цинка) (контрольная работа).
Количественный вольтамперометрический анализ. Определение концентрации веществ по методу градуировочного графика или методу добавок (контрольная работа).
Кулонометрическое титрование тиосульфат-иона (или соляной кислоты) (контрольная работа).
Амперометрическое титрование цинка. (факультативная работа).
Фотометрическое определение элемента (железа, никеля, марганца титана, кремния или фосфора) (контрольная работа).
Определение больших концентраций элементов (марганца никеля, меди и др.) дифференциальным спектрофотометрическим методом (контрольная работа).
Люминесцентное определение циркония или органических красителей (контрольная работа).
Атомно-абсорбционное определение меди (цинка, марганца, железа)
Атомно-эмиссионное (пламенное) определение натрия и калия.
Газохроматографическое определение смеси спиртов (углеводородов).

  1. Основы аналитической химии (под ред. Ю.А. Золотова). В 2-х кн. Общие вопросы. Методы разделения. Методы химического анализа. М.: Высшая школа. 2004. 361, 503 с.Серия «Классический университетский учебник».
  2. Основы аналитической химии. Практическое руководство. Учебное пособие для вузов. Под ред. Ю.А. Золотова. М.: Высшая школа. 2001. 463 с.
  3. Основы аналитической химии. Задачи и вопросы. Учебное пособие для вузов. Под ред. Ю.А. Золотова. М.: Высшая школа. 2004. 412 с.
  4. Е.Н. Дорохова, Г.В. Прохорова. Аналитическая химия. Физико - химические методы анализа. М.: Высшая школа, 1991.

Дополнительная литература

  1. Д. Скуг, Д. Уэст. Основы аналитической химии: в 2-х ч. М.: 1979
  2. В.П.Васильев. Аналитическая химия. ч. 1-2 М.: Высшая школа, 1989.

Программа составлена
доц. Витер И.П.
Редактор
проф. Шеховцова Т.Н.


Предмет аналитической химии

Существуют различные определения понятия «аналитическая химия», например:

Аналитическая химия - это наука о принципах, методах и средствах определения химического состава и структуры веществ.

Аналитическая химия - это научная дисциплина, которая развивает и применяет методы, приборы и общие подходы для получения информации о составе и природе вещества в пространстве и времени (определение, принятое Федерацией европейских химических обществ в 1993 году).

Задачей аналитической химии является создание и совершенствование её методов, определение границ их применимости, оценка метрологических и других характеристик, разработка методик анализа конкретных объектов.

Система, которая обеспечивает конкретный анализ определённых объектов с использованием методов, рекомендуемых аналитической химией, называется аналитической службой .

Основной задачей фармацевтической аналитической службы является контроль качества лекарственных средств, выпускаемых химико-фармацевтической промышленностью и приготовленных в аптеках. Такой контроль проводится в аналитических лабораториях химико-фармацевтических заводов, контрольно-аналитических лабораториях и в аптеках.

Принцип, метод и методика анализа

Анализ - совокупность действий, целью которых является получение информации о химическом составе объекта .

Принцип анализа - явление, которое используется для получения аналитической информации .

Метод анализа - краткое изложение принципов, положенных в основу анализа вещества (без указания определяемого компонента и объекта) .

Методика анализа - подробное описание выполнения анализа данного объекта с использованием выбранного метода, которое обеспечивает регламентированные характеристики правильности и воспроизводимости .

Несколько различных методов анализа могут иметь одинаковый принцип. На одном и том же методе анализа может быть основано множество различных методик выполнения анализа.

Методика анализа может включать в себя следующие этапы:

Конкретная методика анализа не обязательно должна включать в себя все из перечисленных этапов. Набор выполняемых операций зависит от сложности состава анализируемого образца, концентрации определяемого вещества, целей выполнения анализа, допустимой погрешности результата анализа и от того, какой метод анализа предполагается использовать.

Виды анализа

В зависимости от цели различают:

В зависимости от того, какие именно компоненты следует обнаружить или определить, анализ может быть:

· изотопный (отдельные изотопы);

· элементный (элементный состав соединения);

· структурно-групповой /функциональный/ (функциональные группы);

· молекулярный (индивидуальные химические соединения, характеризующиеся определённой молекулярной массой);

· фазовый (отдельные фазы в неоднородном объекте).

В зависимости от массы или объёма анализируемой пробы различают:

· макроанализ (> 0,1 г / 10 – 10 3 мл);

· полумикроанализ (0,01 - 0,1 г / 10 -1 – 10 мл),

· микроанализ (< 0,01 г / 10 -2 – 1 мл);

· субмикроанализ (10 -4 – 10 -3 г / < 10 -2 мл);

· ультрамикроанализ (< 10 -4 г / < 10 -3 мл).

Методы аналитической химии

В зависимости от характера измеряемого свойства (природы процесса, лежащего в основе метода) или способа регистрации аналитического сигнала методы определения бывают:

Физические методы анализа, в свою очередь, бывают:

· спектроскопические (основаны на взаимодействии вещества с электромагнитным излучением);

· электрометрические (электрохимические) (основаны на использовании процессов, происходящих в электрохимической ячейке);

· термометрические (основаны на тепловом воздействии на вещество);

· радиометрические (основаны на ядерных реакция).

Физические и физико-химические методы анализа часто объединяют под общим названием «инструментальные методы анализа ».

ГЛАВА 2

2.1. Аналитические реакции

Химические методы обнаружения веществ основаны на проведении аналитических реакций.

Аналитическими называют химические реакции, результат которых несёт определённую аналитическую информацию, например, реакции, сопровождающиеся выпадением осадка, выделением газа, появлением запаха, изменением окраски, образованием характерных кристаллов .

Наиболее важными характеристиками аналитических реакций является избирательность и предел обнаружения. В зависимости от избирательности (числа веществ, вступающих в данную реакцию или взаимодействующих с данным реагентом) аналитические реакции и вызывающие их реагенты бывают:

Предел обнаружения (m min , P или С min , P) - наименьшая масса или концентрация вещества , которую с заданной доверительной вероятностью P можно отличить от сигнала контрольного опыта (более подробно см. главу 10).

2.2. Систематический и дробный анализ

Обнаружение элементов при совместном присутствии можно проводить дробным и систематическим методами анализа.

Систематическим называется метод качественного анализа, основанный на разделении смеси ионов с помощью групповых реагентов на группы и подгруппы и последующем обнаружении ионов в пределах этих подгрупп с помощью селективных реакций .

Название систематических методов определяется применяемыми групповыми реагентами. Известны систематические методы анализа:

· сероводородный ,

· кислотно-основный ,

· аммиачно-фосфатный .

Каждый систематический метод анализа имеет свою групповую аналитическую классификацию. Недостатком всех систематических методов анализа является необходимость проведения большого числа операций, длительность, громоздкость, значительные потери обнаруживаемых ионов и т.д.

Дробным называется метод качественного анализа, предполагающий обнаружение каждого иона в присутствии других с использованием специфических реакций либо проведение реакций в условиях, исключающих влияние других ионов .

Обычно обнаружение ионов дробным методом проводят по следующей схеме – вначале устраняют влияние мешающих ионов, затем обнаруживают искомый ион с помощью селективной реакции.

Устранение мешающего влияния ионов может быть проведено двумя путями

Например

· комплексообразование

· изменение рН среды

· окислительно-восстановительные реакции

· осаждение

· экстракция

2.3. Общая характеристика, классификация и способы обнаружения катионов

Согласно кислотно-основной классификации катионы в зависимости от их отношения к растворам HCl, H 2 SO 4 , NaOH (или KOH) и NH 3 разделяют на 6 групп. Каждая из групп, за исключением первой, имеет свой групповой реагент.

Первая аналитическая группа катионов

К первой аналитической группе катионов относятся катионы K + , Na + , NH 4 + , Li + . Группового реагента не имеют. Ионы NH 4 + и K + образуют малорастворимые гексанитрокобальтаты, перхлораты, хлорплатинаты, а также малорастворимые соединения с некоторыми крупными органическими анионами, например, дипик­риламином, тетрафенилборатом, гидротартратом. Водные рас­творы солей катионов I группы, за исключением солей, образованных окрашенными анионами, бесцветны.

Гидратированные ионы K + , Na + , Li + являются очень слабыми кислотами, более выражены кислотные свойства у NH 4 + (рК a = 9,24). Несклонны к реакциям комплексообразования. В окислительно-вос­становительных реакциях ионы K + , Na + , Li + не участвуют, так как имеют постоянную и устойчивую степень окисления, ионы NH 4 + об­ладают восстановительными свойствами.

Обнаружение катионов I аналитической группы проводят по следующей схеме

Обнаружению K + , Na + , Li + мешают катионы р- и d-элементов, которые удаляют, осаждая их (NH 4) 2 CO 3 . Обнаружению K + мешает NH 4 + , который удаляют прокаливанием сухого остатка или связыванием с формальдегидом:

4 NH 4 + + 6CHOH + 4ОН - ® (CH 2) 6 N 4 + 10H 2 O


Похожая информация.


Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача - определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа - измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO 4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС 2 О 4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Весы

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г - на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики - на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя - основы количественного анализа - учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.

Среди неорганических осадителей наиболее распространены растворы: HCL; Н 2 SO 4 ; H 3 PO 4 ; NaOH; AgNO 3 ; BaCL 2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт - электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные - черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством - дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) - кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.