Хранение водорода в металлах. Сплавы водород - металл




Неорганическая химия

Совместный гидролиз солей

Например:

Задача 1.1.

Задача 1.2

Ответы внизу

Задача 1.3.

Ответы внизу

Реакции оксидов с водой

Например:

Задача 2.1

Mn 2 O 7 + H 2 O =

Ответы внизу

Задача 3.1

Ответы внизу

Щелочной или кислотный гидролиз бинарных соединений

Для школьного курса – экзотическая вещь, но вот в ЕГЭ-2014 встретилось… Речь идет о таких, например, реакциях:

Ca 3 N 2 + HCl =

Здесь можно рассуждать так. Щелочь (NaOH) или кислота (HCl) реагируют с бинарным соединением в растворе. А это значит, что фактически сначала идет реакция с водой (гидролиз бинарного соединения):

PCl 5 + H 2 O → H 3 PO 4 + HCl

Ca 3 N 2 + H 2 O → Сa(OH) 2 + NH 3

А затем продукты гидролиза реагируют с щелочью (в первом случае) или с кислотой (во втором случае):

PCl 5 + H 2 O → H 3 PO 4 + HCl → (+NaOH) → Na 3 PO 4 + NaCl + H 2 O

Ca 3 N 2 + H 2 O → Сa(OH) 2 + NH 3 → (+HCl) → CaCl 2 + NH 4 Cl + (H 2 O)

В итоге уравнения будут выглядеть так:

PCl 5 + 8NaOH = Na 3 PO 4 + 5NaCl +4 H 2 O

Ca 3 N 2 + 8HCl = 3CaCl 2 + 2NH 4 Cl

Поупражняйтесь:

Задача 3.2 Рассуждая аналогично, определите, что получится при взаимодействии:

Na 3 N + HCl →

PBr 3 + NaOH →

Ответы внизу



Аммиак и его свойства

Аммиак реагирует с кислотами, присоединяя протон по донорно-акцепторному механизму и образуя при этом соли аммония.

Задача 4.1 . Через раствор серной кислоты пропустили аммиак. Какие две соли при этом могут образоваться? От чего это зависит? Напишите уравнения реакций.

Ответы внизу

Водный раствор аммиака обладает свойствами слабой щелочи, поэтому с его помощью можно осаждать нерастворимые гидроксиды металлов.

Задача 4.2 . Через водный раствор сульфата хрома (III) пропустили избыток аммиака. Запишите уравнение реакции.

Ответы внизу

3) Аммиак – восстановитель. В частности, способен восстанавливать металлы из оксидов.

Задача 4.3 . Через оксид меди (II) пропустили поток аммиака при нагревании. Напишите уравнение реакции.

Ответы внизу

4) Аммиак способен быть лигандом и может образовывать комплексы – аммиакаты. Особенно вероятно упоминание в ЕГЭ аммиачного комплекса меди, так как он имеет ярко-синее окрашивание и может использоваться для обнаружения соединений двухвалентной меди .

Задача 4.4 . К раствору сульфата меди (II) добавили избыток водного раствора аммиака. Запишите уравнение реакции.

Ответы внизу

Вообще с наибольшей скоростью идут те реакции, которые сопровождаются взрывами. А при обычных условиях – реакции ионного обмена в водных растворах. Почему? Потому что в них участвуют электролиты, которые уже диссоциированы, связи разрушены. Поэтому ничто не мешает ионам моментально соединиться между собой. Можно считать, что активационный барьер такой реакции приближается к нулю.

Например:

Какие вещества реагируют между собой с наибольшей скоростью при комнатной температуре:

1) HCl(p-p) и NaOH(p-p)

2) S(тв.) и H 2 (г)

3) CO 2 (г) и H 2 O(ж)

4) FeS 2 (тв.) и O 2 (г)

Правильный ответ – 1), так как это реакция ионного обмена.

Смешанные оксиды Fe 3 O 4 и Pb 3 O 4

Железо образует смешанный оксид – железную окалину Fe 3 O 4 (FeO ∙ Fe 2 O 3) со степенями окисления +2 и +3.



Свинец образует смешанный оксид – сурик Pb 3 O 4 (2PbO ∙ PbO 2) со степенями окисления +2 и +4.

При реакциях этих оксидов с кислотами могут получаться сразу две соли:

Fe 3 O 4 + 8HCl = FeCl 2 + 2FeCl 3 + 4H 2 O

Pb 3 O 4 + 4HNO 3 = 2Pb(NO 3) 2 + PbO 2 + H 2 O (PbO 2 амфотерен, поэтому в соль не превращается).

Переходы Fe +2 ↔ Fe +3 и Cu +1 ↔ Cu +2

Вот несколько сложных ситуаций:

Fe 3 O 4 + HNO 3 = что получится?

Казалось бы, должны получиться две соли и вода: Fe(NO 3) 2 + Fe(NO 3) 3 + H 2 O (смотри предыдущий раздел), но HNO 3 – сильный окислитель, поэтому будет окислять железо +2 в составе железной окалины до железа +3 и получится только одна соль:

Fe 3 O 4 + 10HNO 3 (конц) = 3Fe(NO 3) 3 + NO 2 + 5H 2 O

Аналогично в реакции Cu 2 O + HNO 3 может показаться, что продуктами будут CuNO 3 + H 2 O. А на самом деле одновалентная медь (Cu +1 2 O) может окисляться до двухвалентной, поэтому пойдет окислительно-восстановительная реакция:

Cu 2 O + 6HNO 3 (конц) = 2Сu(NO 3) 2 + 2NO 2 + 3H 2 O

Задача 7.1 . Запишите уравнения реакций:

Fe 3 O 4 + H 2 SO 4 (разб) =

Fe 3 O 4 + H 2 SO 4 (конц) =

Fe 2 (SO 4) 3 + H 2 S =

Ответы внизу

Разложение нитратов

В целом разложение нитратов происходит согласно известной схеме, и состав продуктов зависит от расположения металла в ряду активности. Но есть сложные ситуации:

Задача 9.1 Какие продукты получатся при разложении нитрата железа (II)? Запишите уравнение реакции.

Задача 9.2 Какие продукты получатся при разложении нитрата меди (II)? Запишите уравнение реакции.

Ответы внизу

Органическая химия

Тривиальные названия

Надо знать, какие органические вещества соответствуют названиям:

изопрен, дивинил, винилацетилен, толуол, ксилол, стирол, кумол, этиленгликоль, глицерин, формальдегид, уксусный альдегид, пропионовый альдегид, ацетон, первые шесть предельных одноосновных кислот (муравьиная, уксусная, пропионовая, масляная, валериановая, капроновая), акриловая кислота, стеариновая кислота, пальмитиновая кислота, олеиновая кислота, линолевая кислота, щавелевая кислота, бензойная кислота, анилин, глицин, аланин. Не путайте пропионовую кислоту с пропеновой!! Соли важнейших кислот: муравьиной – формиаты, уксусной – ацетаты, пропионовой – пропионаты, масляной – бутираты, щавелевой – оксалаты. Радикал –CH=CH 2 называется винил!!

Заодно и некоторые неорганические тривиальные названия:

Поваренная соль (NaCl), негашеная известь (CaO), гашеная известь (Ca(OH) 2), известковая вода (раствор Ca(OH) 2), известняк (CaCO 3), кварц (он же кремнезем или диоксид кремния – SiO 2), углекислый газ (CO 2), угарный газ (CO), сернистый газ (SO 2), бурый газ (NO 2), питьевая или пищевая сода (NaHCO 3), кальцинированная сода (Na 2 CO 3), аммиак (NH 3), фосфин (PH 3), силан (SiH 4), пирит (FeS 2), олеум (раствор SO 3 в концентрированной H 2 SO 4), медный купорос (CuSO 4 ∙5H 2 O).

Некоторые редкие реакции

1) Образование винилацетилена :

2) Реакция прямого окисления этилена в уксусный альдегид :

Эта реакция коварна тем, что мы хорошо знаем, как ацетилен превращается в альдегид (реакция Кучерова), а если в цепочке встретится превращение этилен → альдегид, то это может нас поставить в тупик. Так вот, имеется в виду эта реакция!

3) Реакция прямого окисления бутана в уксусную кислоту:

Эта реакция лежит в основе промышленного производства уксусной кислоты.

4) Реакция Лебедева:

Отличия фенолов от спиртов

Огромное количество ошибок в таких заданиях!!

1) Следует помнить, что фенолы более кислотны, чем спирты (связь О-Н в них более полярна). Поэтому спирты не реагируют с щелочью, а фенолы реагируют и с щелочью, и некоторыми солями (карбонаты, гидрокарбонаты).

Например:

Задача 10.1

Какие из этих веществ реагируют с литием:

а) этиленгликоль, б) метанол, в) фенол, г) кумол, д) глицерин.

Задача 10.2

Какие из этих веществ реагируют с гидроксидом калия:

а) этиленгликоль, б) стирол, в) фенол, г) этанол, д) глицерин.

Задача 10.3

Какие из этих веществ реагируют с гидрокарбонатом цезия:

а) этиленгликоль, б) толуол, в) пропанол-1, г) фенол, д) глицерин.

2) Следует помнить, что спирты реагируют с галогеноводородами (эта реакция идет по связи С-О), а фенолы нет (в них связь С-О из-за эффекта сопряжения малоподвижна).

Дисахариды

Основные дисахариды: сахароза, лактоза и мальтоза имеют одинаковую формулу C 12 H 22 O 11 .

О них следует помнить:

1) что они способны гидролизоваться на те моносахариды, из которых состоят: сахароза – на глюкозу и фруктозу, лактоза – на глюкозу и галактозу, мальтоза – на две глюкозы.

2) что лактоза и мальтоза обладают альдегидной функцией, то есть являются восстанавливающими сахарами (в частности, дают реакции «серебряного» и «медного» зеркала), а сахароза – невосстанавливающий дисахарид, не имеет альдегидной функции.

Механизмы реакций

Будем надеяться, что достаточно следующих знаний:

1) для алканов (в том числе в боковых цепях аренов, если эти цепи предельные) характерны реакции свободнорадикального замещения (с галогенами), которые идут по радикальному механизму (инициирование цепи – образование свободных радикалов, развитие цепи, обрыв цепи на стенках сосуда или при соударении радикалов);

2) для алкенов, алкинов, аренов характерны реакции электрофильного присоединения , которые идут по ионному механизму (через образование пи-комплекса и карбокатиона ).

Особенности бензола

1. Бензол в отличие от других аренов не окисляется перманганатом калия.

2. Бензол и его гомологи способны вступать в реакцию присоединения с водородом. Но только бензол способен также вступать в реакцию присоединения с хлором (только бензол и только с хлором!). При этом все арены способны вступать в реакцию замещения с галогенами.

Реакция Зинина

Восстановление нитробензола (или аналогичных ему соединений) в анилин (или другие ароматические амины). Эта реакция в одном из ее видов почти обязательно встретится!

Вариант 1 – восстановление молекулярным водородом:

C 6 H 5 NO 2 + 3H 2 → C 6 H 5 NH 2 +2H 2 O

Вариант 2 – восстановление водородом, полученным при реакции железа (цинка) с соляной кислотой:

C 6 H 5 NO 2 + 3Fe + 7HCl → C 6 H 5 NH 3 Cl +3FeCl 2 + 2H 2 O

Вариант 3 – восстановление водородом, полученным при реакции алюминия с щелочью:

C 6 H 5 NO 2 + 2Al + 2NaOH + 4H 2 O → C 6 H 5 NH 2 +2Na

Свойства аминов

Почему-то свойства аминов запоминаются хуже всего. Возможно, это связано с тем, что амины изучаются в курсе органической химии последними, и их свойства не удается повторить, изучая другие классы веществ. Поэтому рецепт такой: просто выучить все свойства аминов, аминокислот и белков.

Разложение ацетатов

Почему-то составители ЕГЭ считают, что нужно знать, как разлагаются ацетаты. Хотя в учебниках этой реакции нет. Разные ацетаты разлагаются по-разному, но давайте запомним реакцию, которая попадается в ЕГЭ:

при термическом разложении ацетата бария (кальция) получается карбонат бария (кальция) и ацетон!!!

Ba(CH 3 COO) 2 → BaCO 3 + (CH 3) 2 CO (t 0 )

Ca(CH 3 COO) 2 → CaCO 3 + (CH 3) 2 CO (t 0 )

По сути, при этом происходит декарбоксилирование:

Ответы:

1.1. При совместном гидролизе солей, одна из которых гидролизуется по катиону, а другая – по аниону, гидролиз взаимно усиливается и идет до образования конечный продуктов гидролиза обеих солей: 2AlCl 3 + 3Na 2 S + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S + 6NaCl

1.2. Аналогично: 2FeCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Fe(OH) 3 ↓ + 3CO 2 + 6NaCl

1.3. Последовательность реакций:

2Al + 3I 2 = 2AlI 3

AlI 3 + 3NaOH = Al(OH) 3 + 3NaI

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 +3CO 2 + 6NaCl

NO + H 2 O = не реагируют (так как несолеобразующий оксид)

BaO + H 2 O = Ba(OH) 2 (реагируют, так как получается растворимый гидроксид)

CrO + H 2 O = (не реагируют, так как гидроксид хрома (II) нерастворим)

SO 2 + H 2 O = H 2 SO 3 (реагируют, так как получается растворимый гидроксид)

SiO 2 + H 2 O = (не реагируют, так как гидроксид кремния (IV), то есть кремниевая кислота - нерастворима)

Mn 2 O 7 + H 2 O = 2HMnO 4 (реагируют, так как получается растворимый гидроксид – марганцевая кислота)

2NO 2 + H 2 O = HNO 2 + HNO 3

3.1. При гидролизе бинарных соединений получается гидроксид первого элемента и водородное соединение второго элемента. В случае гидрида вторым продуктом будет просто водород:

NaH + H 2 O = NaOH + H 2

MgH 2 + 2H 2 O = Mg(OH) 2 + 2H 2

Na 3 N + 4HCl → 3NaCl + NH 4 Cl

PBr 3 + 6NaOH → Na3PO3 + 3NaBr + 3H 2 O

4.1 При пропускании аммиака через растворы многоосновных кислот могут получаться средние или кислые соли, в зависимости от того, какой из реагентов в избытке:

NH 3 + H 2 SO 4 = NH 4 HSO 4 (кислота в избытке)

2NH 3 + H 2 SO 4 = 2 (NH 4) 2 SO 4 (аммиак в избытке)

Cr 2 (SO 4) 3 + 6NH 3 + 6H 2 O = 2Cr(OH) 3 ↓ + 3(NH 4) 2 SO 4

(Фактически это та же реакция, что и:

Cr 2 (SO 4) 3 + 6NH 4 OН = 2Cr(OH) 3 ↓ + 3(NH 4) 2 SO 4 ,

но формулу NH 4 OН сейчас писать не принято).

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O

CuSO 4 + 4NH 3 = SO 4

(Хотя на самом деле сначала пойдет такая реакция:

CuSO 4 + 2NH 3 + 2H 2 O = Cu(OH) 2 ↓ + (NH 4) 2 SO 4 (так как аммиак действует как щелочь)

А потом: Cu(OH) 2 ↓ + 4NH 3 = (OH) 2)

В общем, в любом случае при достаточном количестве аммиака получится комплекс и ярко-синее окрашивание!

K 3 + 6HBr = 3KBr + AlBr 3 + 6H 2 O

K 3 + 3HBr = 3KBr + Al(OH) 3 ↓ + 3H 2 O

Na 2 + 2CO 2 = 2NaHCO 3 + Zn(OH) 2 ↓

K = KAlO 2 + 2H 2 O (t 0 )

Cl + 2HNO 3 = 2NH 4 NO 3 + AgCl↓

2СuSO 4 + 4KI = 2CuI + I 2 + 2K 2 SO 4 (двухвалентная медь восстанавливается до одновалентной)

Fe 2 O 3 + 6HI = 2FeI 2 + I 2 + 3H 2 O

KNO 2 + NH 4 I = KI + N 2 + 2H 2 O

H 2 O 2 + 2KI = I 2 + 2KOH

Fe 3 O 4 + 4H 2 SO 4 (разб) = FeSO 4 + Fe 2 (SO 4) 3 + 4H2O

так как разбавленная серная кислота не является сильным окислителем, то идет обычная обменная реакция.

2Fe 3 O 4 + 10H 2 SO 4 (конц) = 3Fe 2 (SO 4) 3 + SO 2 + 10H 2 O

так как концентрированная серная кислота является сильным окислителем, то железо +2 окисляется до железа +3.

Fe 2 (SO 4) 3 + H 2 S = 2FeSO 4 + S + H 2 SO 4

так как сероводород является восстановителем, то железо +3 восстанавливается до железа +2.

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O

Na 2 SO 4 + NaOH – не реагируют

NaHSO 4 + Ba(OH) 2 = BaSO 4 + NaOH + H 2 O

Na 2 SO 4 + Ba(OH) 2 = BaSO 4 + 2NaOH

Сu + 2H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O

Сu + HCl – не реагируют

CuO + 2HCl = CuCl 2 + H2O

ZnS + 2HCl = ZnCl 2 + H 2 S

ZnO + 2HCl = ZnCl 2 + H 2 O

Cu 2 O + 3H 2 SO 4 = 2CuSO 4 + SO 2 + 3H 2 O (тут дело в том, что, поскольку кислота концентрированная, то она доокисляпет Cu +1 до Cu +2 .

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Казалось бы, при разложении нитрата железа (II) должны получиться оксид железа (II), оксид азота (IV) и кислород. Но хитрость в том, что поскольку в оксиде железа (II) железо имеет не высшую степень окисления, а в реакции выделяется кислород, то железо будет окисляться до +3 и получится оксид железа (III):

Fe(NO 3) 2 → Fe 2 O 3 + NO 2 + O 2

В этой реакции сразу два восстановителя – железо и кислород. С коэффициентами будет так:

4Fe(NO 3) 2 = 2Fe 2 O 3 + 8NO 2 + O 2

В этой реакции ничего особенного нет, кроме того, что часто забывают, что медь относится еще к тем металлам, при разложении которых получается оксид металла, а не сам металл:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

А вот все металлы, которые за медью, при разложении своих нитратов будут давать уже просто металл.

Правильные ответы: а,б,в,д (в кумоле вообще нет гидроксильной группы, это арен).

Правильные ответы: в (в стироле вообще нет гидроксильной группы, это арен).

Правильные ответы: нет правильного ответа (в толуоле вообще нет гидроксильной группы, это арен. Фенол недостаточно кислотный. Могла бы реагировать какая-нибудь карбоновая кислота.).

Неорганическая химия

Совместный гидролиз солей

Например:

Задача 1.1. Что получится при сливании водных растворов хлорида алюминия и сульфида натрия (напишите уравнение реакции)?

Задача 1.2 . Что получится при сливании водных растворов хлорида железа (III) и карбоната натрия (напишите уравнение реакции)?

Ответы внизу

Совместный гидролиз часто встречается в задачах С2, где его не так-то просто обнаружить. Вот пример:

Задача 1.3. Порошок металлического алюминия смешали с твердым иодом и добавили несколько капель воды. К полученной соли добавили раствор гидроксида натрия до выпадения осадка. Образовавшийся осадок растворили в соляной кислоте. При последующем добавлении раствора карбоната натрия вновь наблюдали выпадение осадка. Напишите уравнения четырех описанных реакций.

Ответы внизу

Реакции оксидов с водой

Вопрос: Когда оксиды реагируют с водой?

Ответ: с водой реагируют только солеобразующие оксиды и только если получается растворимый гидроксид.

Например:

Задача 2.1 . Запишите уравнения осуществимых реакций:

Mn 2 O 7 + H 2 O =

Ответы внизу

Гидриды металлов и их свойства

Водород способен реагировать с активными металлами (преимущественно стоящими до алюминия в ряду активности металлов, то есть это щелочные и щелочно-земельные металлы). При этом образуются гидриды, например: LiH, CaH 2 .

В гидридах степень окисления водорода равна -1!

Гидриды – это бинарные соединения, а потому способны гидролизоваться.

Задача 3.1 Запишите уравнения гидролиза гидрида натрия, гидрида магния.

Назовем несколько отличительных характеристик материалов, используемых в гидридных системах.

1) Все сплавы, отмеченные торговой маркой HY-STOR, произведены компанией Ener­gies, Inc. Большая часть данных, приведенных в этом параграфе взята из работы Хьюстона и Сэндрока. В химических формулах символ М обозначает мишметалл - смесь редкоземельных металлов, обычно получаемую из моназитной пыли. Влияние мишметалла на давление на плато сильно зависит от соотношения количества церия и лантана в этой смеси металлов.

Наклон плато

В соответствии с упрощенной термодинамической моделью гидридной сис­темы, описанной в следующем параграфе, плато на зависимости равновесное | давления от концентрации должно быть горизонтальным. Однако на практ; давление на плато немного увеличивается при увеличении концентрации водо­рода в твердой фазе.

Наклон плато может быть количественно охарактеризован с помощью ко­эффициента наклона d n(pd)/d(H, М), где pd - давление на плато на изотерме десорбции. На рис. 9.7 пунктирная линия, проходящая через изотерму десорб­ции, соответствующую 25 °С, пересекает вертикальную линию Н/М= 0 в точке pd = 9,1 атм, а линию Н/М= 1,2 в точке pd = 14,8 атм. Тогда

dlnpd In 14,8-In 9,1

М) 1,2 ’ ■ U ’

Это значение коэффициента является приемлемым Параметр наклона плато равновесного давления для сплава TiFe, например, равен нулю, тогда как у не­которых сплавов кальция значение этого параметра превышает три. При затвер­девании сплава (на этапе изготовления) имеет место тенденция к сегрегации, т. е. выделению некоторых элементов, входящих в состав сплава. По-видимому, данное явление - это основная причина возникновения наклона плато, так как с позиций термодинамики зависимость равновесного давления от концентрации водорода для идеально однородного сплава должна иметь горизонтальное плато. Отжиг материала, предшествующий его измельчению, может уменьшить наклон плато. Значения коэффициента наклона и некоторые другие характеристики приведены в табл. 9.4, 9.5 и 9.6.

Гистерезис абсорбции-десорбции

Как отмечалось выше, давление на плато при абсорбции обычно несколько выше, чем при десорбции. Другими словами, наблюдается гистерезис процессов абсорбции и десорбции при цикличной зарядке и разрядке сплава (см. рис. 9.7,

9.8, 9.10 и 9.11).

Таблица 9.4. Термодинамические свойства некоторых гидридов металлов

Сплав HY STOR*>

AHj, МДж/кмоль H2

Д Sf, кДжДК-кмоль H2)

М^Ч,15РЄ0,85

Наклон плато8*, ^

Коэффициент гистерезиса Pa/Pd

Таблица 9.6. Максимальное содержание водорода и теплоемкость некоторых гидридов металлов

Максимальное содержание водорода

Теплоемкость ДжДкг - К)

массовая доля, %

Явление гистерезиса связано с необратимым процессом выделения теплоты вследствие пластической деформации кристаллической решетки, а именно ее расширения при абсорбции и сжатия при десорбции водорода.

Явление гистерезиса количественно характеризуется отношением значений равновесного давления водорода при абсорбции и десорбции при значении ЩМ= 0,5 и обычно температуре 25 °С. Принято считать, что это отношение от температуры не зависит.

Полезная емкость определяется как изменение количества атомов абсорби­рованного водорода, приходящихся на один атом металла в гидриде, Н/М при изменении давления от значения, в 10 раз превышающего давление на плато, до значения, составляющего 0,1 давления плато. Такой способ определения полез­ной емкости дает несколько завышенные значения. Более реалистичное значение получается, если существенно сузить диапазон изменения давления.

На рис. 9.9 (сплав Fe0 8ІЧІ(| 2Ті) давление на плато при температуре 70 °С при­мерно равно 0,9 атм. При давлении в 10 раз больше указанного значения отноше­ние Н/М составляет 0,65, а при давлении в 10 раз меньше, чем давление на плато, Н/М= 0,02. Таким образом, разность А(Н/М) = 0,63. Другими словами, из 1 кмоля гидрида можно извлечь 0,63 кмоля атомарного водорода (0,63 кг).

сплава FeTi (ср. с рис. 9.4)

Теплоемкость

Гидридные системы активируются путем изменения температуры. Для то чтобы спроектировать такие системы, необходимо иметь информацию о зн чении теплоемкости различных сплавов. Значения теплоемкости ряда спла приведены в табл. 9.6.

Железо (I) Гидрид

Стик и мяч модель железной молекулы гидрида

имена
Систематическое название IUPAC

Hydridoiron (3 )

Идентификаторы
свойства
FeH 3
Молярная масса 56,853 г моль -1
термохимия
450,6 кДж моль -1
Родственные соединения

Родственные соединения

Железные гидриды , FeH 2
CrH , CaH , MgH
ссылки Infobox

Железо (I) , гидрид , систематически названный гидрид железа и поли (hydridoiron) представляет собой твердое неорганическое соединение с химической формулой (FeH)
н
(также написано()
п
или FeH). Это и термодинамический и кинетический неустойчивыйотношению к разложению при температуре окружающей среды, икак таковые, оно мало известно о его объемных свойствах.

Железо (I) , гидрид является самым простым полимерным гидридом железа. Из - за его нестабильности, она не имеет никакого практического промышленного применения. Однако, в металлургической химии, железо (I) Гидрид является основой для некоторых форм железа-водородных сплавов .

Номенклатура

Систематическое название гидрид железа , действительный ИЮПАК название, построен в соответствии с композиционной номенклатуры. Однако, как следует из названия является композиционным в природе, она не различает соединения одного и ту же стехиометрию, такие как молекулярные частицы, которые демонстрируют различные химические свойства. Систематические имена поли (hydridoiron) и поли , а также допустимые имена IUPAC, построены в соответствии с добавкой и электронно-дефицитной замещающими номенклатурами, соответственно. Они отличают титульное соединение от других.

Hydridoiron

Hydridoiron, также систематически назван ferrane (1), представляет собой соединение, связанное с химической формулой FeH (также написано ). Он также нестабилен при температуре окружающей среды с дополнительной склонностью к autopolymerize, и поэтому не может быть сконцентрирован.

Hydridoiron является самым простым Гидридом молекулярного железа. Кроме того, это может рассматриваться как железо (I) Гидрид мономер. Он был обнаружен в изоляции только в экстремальных условиях, как в ловушке замороженных благородных газов , в из холодных звезд , или в виде газа при температурах выше точки кипения железа. Предполагается иметь три оборванных валентные связи , и поэтому является свободным радикалом ; его формула может быть записана FeH 3 подчеркнуть этот факт.

При очень низких температурах (ниже 10 ), FeH может образовывать комплекс с молекулярным водородом FeH · H 2 .

Hydridoiron был впервые обнаружен в лаборатории Б. Клеман и Л. Åkerlind в 1950-х годах.

свойства

Радикальность и кислотность

Один электрон других атомных или молекулярных частиц может быть соединен с железным центром в hydridoiron путем заменой:

RR → · Р

Из - за этого захвата одного электрона, hydridoiron имеет радикальный характер. Hydridoiron является сильным радикалом.

Электронная пара основания Льюиса может вступить с железным центром по приведению:

+: L →

Из - за этот захват присоединенных паров электронов , hydridoiron имеет Lewis-кислотный характер. Следует ожидать, что железо (I) , гидрид значительно уменьшился радикальные свойства, но имеет аналогичные свойства кислот, однако скорость реакции и константа равновесия различны.

Состав

В железа (I) гидрида, атомы образуют сеть, отдельные атомы соединены друг с другом с помощью ковалентных связей . Так как полимерная твердое вещество, монокристаллический образец не претерпят переходы между состояниями, такими как плавление и растворением, так как это потребовало бы перегруппировку молекулярных связей и, следовательно, изменять свою химическую идентичность. Коллоидные кристаллические образцы, в котором межмолекулярные силы имеют отношение, как ожидается, пройти переходы между состояниями.

(I) , гидрид железа принимает двойную гексагональную плотно упакованную кристаллическую структуру с P6 3 / ММС пространственной группы, также упоминается как гидрид железа эпсилон-простое в контексте системы железо-водород. По прогнозам демонстрировать полиморфизм, переход при некоторой температуре ниже -173 ° С (-279 ° F) к гранецентрированной кристаллической структуре с Ртом 3 м пространственной группой.

Электромагнитные свойства

FeH прогнозируется иметь квартет и секстет основные состояния.

Молекула FeH имеет, по меньшей мере, четыре низкие электронные энергетические состояния, вызванные, не связующий электрона, принимая позиции в различных орбиталей: X 4 Δ, A 6 Δ б 6 Π, и с 6 Σ + . Более высокие энергетические состояния называются B 4 Е - , C 4 Φ, D 4 Σ + , E 4 Π и F 4 Δ. Даже более высокие уровни помечены G 4 П и Н 4 Д из системы квартета, и г - Σ - , е 6 Π, F 6 Δ, и г 6 Φ. В квартета состояний внутреннее квантовое число J принимает значения 1/2, 3/2, 5/2 и 7/2.

FeH играет важную полосу поглощения (так называемый группа крыла-Форд ) в ближней инфракрасной области с края полосы на 989.652 нм и максимум поглощения при 991 нм. Она также имеет линии в синий на 470 до 502,5 нм, и в зеленый от 520 до 540 нм.

Небольшой изотопный сдвиг в дейтерированном FED по сравнению с ФЭ на этой длине волны показывает, что группа происходит из - за (0,0) перехода от состояния , а именно F 4 Д-X 4 Д.

Различные другие группы существуют в каждой части спектра из - за различные колебательные переходы. (1,0) группы, а также из - за F 4 Δ-X 4 Δ переходов, составляет около 869,0 нм и (2,0) полоса вокруг 781,8 нм.

В каждой группе имеется большое количество линий. Это обусловлено переходом между различными вращательными состояниями. Линии сгруппированы в поддиапазонах 4 Δ 7/2 - 4 Δ 7/2 (сильный) и 4 Δ 5/2 - 4 Δ 5/2 , 4 Δ 3/2 - 4 Δ 3/2 и 4 Δ 1/2 - 4 Δ 1/2 . Числа как 7/2 являются значением Ом спина компонента. Каждый из них имеет две ветви Р и R, а некоторые из них ветвь Q. Внутри каждый есть то, что называется Λ расщеплением, что приводит к снижению энергетических линий (обозначенный «а») и более высокие энергетические линии (так называемый «б»). Для каждого из них существует ряд спектральных линий, зависящих от J, вращательное квантовое число, начиная с 3,5 и идет вверх с шагом 1. Как получает высокое J зависит от температуры. Кроме того, существует 12 спутниковых ветвей 4 Δ 7/2 - 4 Δ 5/2 , 4 Δ 5/2 - 4 Δ 3/2 , 4 Δ 3/2 - 4 Δ 1/2 , 4 Δ 5/2 - 4 Δ 7/2 , 4 Δ 3/2 - 4 Δ 5/2 и 4 Δ 1/2 - 4 Δ 3/2 с P и R ветвей.

Некоторые линии являются магнитно - чувствительными, например, 994.813 и 995.825 нм. Они расширяются с помощью эффекта Зеемана еще другие в той же полосе частот являются нечувствительными к воздействию магнитных полей, таких как 994.911 и 995.677 нм. Есть 222 линии в спектре (0-0) группы.

Вхождение в космическом пространстве

Гидрид железа является одним из немногих молекул, обнаруженных на Солнце Линии для ФЭ в сине-зеленой части спектра Солнца были зарегистрированы в 1972 году, в том числе много линий поглощения в 1972. Кроме солнечных пятен umbras показать группу Wing-Форд заметно.

Полосы для ФЭ (и другие гидриды

Начнем с состава соединений внедрения. Рассмотрим этот вопрос на примере гидридов переходных элементов. Если при образовании фазы внедрения атомы водорода попадают только в тетраэдрические пустоты в решетке металла, то предельное содержание водорода в таком соединении должно соответствовать формуле МеН 2 (где Ме - металл, атомы которого образуют плотную упаковку). Ведь тетраэдрических пустот в решетке в два раза больше, чем атомов, образующих плотную упаковку. Если же атомы водорода попадают только в октаэдрические пустоты, то из таких же соображений следует, что предельное содержание водорода должно соответствовать формуле МеН, - октаэдрических пустот в плотной упаковке столько же, сколько слагающих эту упаковку атомов.

Обычно при образовании соединений переходных металлов с водородом заполняются либо октаэдрические, либо тетраэдрические пустоты. В зависимости от природы исходных веществ и условий проведения процесса может произойти полное или только частичное заполнение. В последнем случае состав соединения будет отклоняться от целочисленной формулы, будет неопределенным, например МеН 1-x ; МеН 2-x . Соединения внедрения, следовательно, по самой своей природе должны быть соединениями переменного состава, т. е. такими, состав которых в зависимости от условий их получения и дальнейшей обработки меняется в довольно широких пределах.

Рассмотрим некоторые типичные свойства фаз внедрения на примере соединений с водородом. Для этого сравним гидриды некоторых переходных элементов с гидридом щелочного металла (лития).

При соединении лития с водородом, образуется вещество определенного состава LiH. По физическим свойствам оно не имеет ничего общего с исходным металлом. Литий проводит электрический ток, обладает металлическим блеском, пластичностью, словом, всем комплексом металлических свойств. Гидрид же лития не обладает ни одним из этих свойств. Это бесцветное солеобразное вещество, нисколько не похожее на металл. Как и другие гидриды щелочных и щелочноземельных металлов, гидрид лития - типичное ионное соединение, где атом лития имеет значительный положительный заряд, а атом водорода - такой же отрицательный заряд. Плотность лития равна 0,53 г/см 3 , а плотность гидрида лития 0,82 г/см 3 - происходит заметное возрастание плотности. (То же самое наблюдается при образовании гидридов других щелочных и щелочноземельных металлов).

Совершенно иные превращения претерпевает палладий (типичный переходный элемент) при взаимодействии с водородом. Хорошо известен демонстрационный опыт, при котором пластина палладия, покрытая с одной стороны газонепроницаемым лаком, изгибается при обдувании водородом.

Это происходит потому, что плотность образующегося гидрида палладия уменьшается. Такое явление может иметь место, только если расстояние между атомами металла возрастает. Атомы внедрившегося водорода "расталкивают" атомы металла, изменяя характеристики кристаллической решетки.

Увеличение объема металлов при поглощении водорода с образованием фаз внедрения происходит настолько заметно, что плотность металла, насыщенного водородом, оказывается существенно ниже, плотности исходного металла (см. таблицу 2)

Строго говоря, решетка, образованная атомами металла, обычно не остается совсем неизменной после поглощения этим металлом водорода. Как ни мал атом водорода, он все-таки вносит в решетку искажения. При этом обычно происходит не просто пропорциональное увеличение расстояний между атомами в решетке, но и некоторое изменение ее симметрии. Поэтому часто лишь для простоты говорится, что атомы водорода внедряются в пустоты в плотной упаковке - сама по себе плотная упаковка атомов металла при внедрении атомов водорода все же нарушается.

Таблица 2 Изменение плотности некоторых переходных металлов при образовании фаз внедрения с водородом.

Это далеко не единственное отличие между гидридами типичных и переходных металлов.

При образовании гидридов внедрения сохраняются такие типичные свойства металлов, как металлический блеск, электропроводность. Правда, они могут быть выражены слабее, чем у исходных металлов. Таким образом, гидриды внедрения значительно больше похожи на исходные металлы, чем гидриды щелочных и щелочноземельных металлов.

Значительно сильнее изменяется такое свойство как пластичность - насыщенные водородом металлы делаются хрупкими, часто исходные металлы трудно превратить в порошок, а с гидридами тех же металлов это сделать гораздо легче.

Наконец нужно отметить очень важное свойство гидридов внедрения. При взаимодействии переходных металлов с водородом металлический образец не разрушается. Более того, он сохраняет первоначальную форму. Это же происходит и при обратном процессе - разложении гидридов (потере водорода).

Может возникнуть естественный вопрос: а можно ли считать процесс образования фаз внедрения химическим в полном смысле этого слова? Возможно образование водных растворов - процесс, имеющий куда больше "химизма"?

Для ответа надо привлечь химическую термодинамику.

Известно, что образование химических соединений из простых веществ (как впрочем, и другие химические процессы) обычно сопровождается заметными энергетическими эффектами. Чаще всего эти эффекты экзотермические, причем, чем больше энергии выделяется, тем прочнее полученное соединение.

Тепловые эффекты - один из важнейших признаков того, что происходит не просто смешение веществ, а протекает химическая реакция. Раз изменяется внутренняя энергия системы, следовательно, происходит образование новых связей.

Посмотрим теперь, какие же энергетические эффекты вызывает образование гидридов внедрения. Оказывается, что разброс здесь достаточно велик. У металлов побочных подгрупп III, IV и V групп периодической системы образование гидридов внедрения сопровождается значительным выделением тепла, порядка 30--50 ккал/моль (при образовании гидрида лития из простых веществ выделяется около 21 ккал/моль). Можно признать, что гидриды внедрения, по крайней мере, элементов указанных подгрупп, вполне "настоящие" химические соединения. Следует, однако, отметить, что для многих металлов, расположенных во второй половине каждого переходного ряда (например, для железа, никеля, меди), энергетические эффекты образования гидридов внедрения невелики. Например, для гидрида примерного состава FeH 2 тепловой эффект составляет всего 0,2 ккал/моль.

Малая величина ДН обр таких гидридов диктует методы их получения - не прямое взаимодействие металла с водородом, а косвенный путь.

Рассмотрим несколько примеров.

Гидрид никеля, состав которого близок к NiH 2 , можно получить, действуя на эфирный раствор хлористого никеля фенилмагнийбромидом в токе Н 2:

Получаемый в результате этой реакции гидрид никеля представляет собой черный порошок, легко отдающий водород (что вообще свойственно гидридам внедрения), при небольшом нагревании в атмосфере кислорода он воспламеняется.

Таким же путем могут быть получены гидриды соседей никеля по периодической системе - кобальта и железа.

В основе другого способа получения гидридов переходных лежит использование аланата лития LiAlH При взаимодействии хлорида соответствующего металла с LiAlH 4 в эфирном растворе образуется аланат этого металла:

MeCl 2 + LiAlH 4 > Me(AlH 4 ) 2 + LiCl (5)

Для многих металлов аланаты - непрочные соединения, распадающиеся при повышении температуры.

Me(AlH 4 ) 2 > MeH 2 + Al + H 2 (6)

Но для некоторых металлов побочных подгрупп протекает иной процесс:

Me(AlH 4 ) 2 > MeH 2 + AlH 3 (7)

В этом случае вместо смеси водорода и алюминия образуется гидрид алюминия, который растворим в эфире. Промыв продукт реакции эфиром, можно получить в остатке чистый гидрид переходного металла. Таким путем были получены, например, малоустойчивые гидриды цинка, кадмия и ртути.

Можно сделать вывод, что получение гидридов элементов побочных подгрупп основано на типичных методах неорганического синтеза: реакции обмена, термическое разложение непрочных соединений в определенных условиях и т. д. Этими способами были получены гидриды почти всех переходных элементов, даже весьма непрочные. Состав полученных гидридов обычно близок к стехиометрическому: FeH 2 , CоH 2 , NiH 2 ZnH 2 , CdH 2 , HgH 2 . По-видимому, достижению стехиометрии способствует невысокая температура, при которой проводятся эти реакции.

Разберем, теперь влияние условий реакции на состав получаемых гидридов внедрения. Оно прямо вытекает из принципа Ле-Шателье. Чем выше давление водорода и ниже температура, тем ближе к предельной величине насыщение металла водородом. Иными словами, каждой определенной температуре и каждой величине давления соответствует определенная степень насыщения металла водородом. И наоборот, каждой температуре соответствует определенное равновесное давление водорода над поверхностью металла.

Отсюда проистекает одно из возможных применений гидридов переходных элементов. Допустим, в какой-то системе нужно создать строго определенное давление водорода. В такую систему помещается насыщенный водородом металл (в опытах использовался титан). Нагревая его до определенной температуры, можно создать в системе нужное давление газообразного водорода.

Любой класс соединений интересен своей химической природой, составом и строением частиц из которых состоит и характером связи между этими частицами. Этому химики посвящают свои теоретические и экспериментальные работы. Не являются исключением с фазы внедрения.

Окончательной точки зрения на природу гидридов внедрения пока нет. Часто разные, иногда противоположные точки зрения удачно объясняют одни и те же факты. Иными словами, пока не существует единых теоретических воззрений на строение и свойства соединений внедрения.

Рассмотрим некоторые экспериментальные факты.

Наиболее подробно изучен процесс поглощения водорода палладием. Для этого переходного металла характерно, что концентрация растворенного в нем водорода при постоянной температуре пропорциональна квадратному корню из величины внешнего давления водорода.

При любой температуре водород в какой-то степени, диссоциирует на свободные атомы, поэтому имеется равновесие:

Константа этого равновесия:

где р Н -- давление (концентрация) атомарного водорода.

Отсюда (11)

Видно, что концентрация атомарного водорода в газовой фазе пропорциональна корню квадратному от величины давления (концентрации) молекулярного водорода. Но той же величине пропорциональна и концентрация водорода в палладии.

Отсюда можно сделать вывод, что палладий растворяет водород в виде отдельных атомов.

Каков, в таком случае характер связи в гидриде палладия? Для ответа на этот вопрос был проделан ряд экспериментов.

Было обнаружено, что при пропускании электрического тока через насыщенный водородом палладий атомы неметалла перемещаются к катоду. Надо полагать, что оказавшийся в решетке металла водород полностью или частично диссоциируют на протоны (т. е. ионы Н +) и электроны.

Данные об электронном строении гидрида палладия были получены при изучении магнитных свойств. Исследовалось изменение магнитных свойств гидрида от количества водорода, вошедшего в структуру. На основании изучения магнитных свойств вещества можно оценить, какое число неспаренных электронов содержится в частицах, из которых это вещество состоит. В среднем на один атом палладия приходится примерно 0,55 неспаренного электрона. При насыщении палладия водородом число неспаренных электронов уменьшается. А в веществе состава PdH 0 , 55 неспаренные электроны практически отсутствуют.

На основании этих данных можно сделать вывод: неспаренные электроны палладия образуют пары с неспаренными электронами атомов водорода.

Однако, свойства гидридов внедрения (в частности, электрические и магнитные) можно объяснить и на основе противоположной гипотезы. Можно предположить, что в гидридах внедрения имеются ионы Н - , образующиеся за счет захвата атомами водорода части полусвободных электронов, имеющихся в решетке металла. В этом случае электроны, полученные от металла, также образовывали бы пары с электронами, имеющимися на атомах водорода. Такой подход также объясняет результаты магнитных измерений.

Возможно, в гидридах внедрения сосуществуют оба вида ионов. Электроны металла и электроны водорода образуют пары и, следовательно, возникает ковалентная связь. Эти электронные пары могут быть смещены в той или иной степени к одному из атомов - металла или водорода.

Электронная пара смещена сильнее к атому металла в гидридах тех металлов, которые менее склонны отдавать электроны, например в гидридах палладия или никеля. А вот в гидридах скандия и урана, по-видимому, электронная пара сильно смещена в сторону водорода. Поэтому гидриды лантаноидов и актиноидов во многом похожи на гидриды щелочноземельных металлов. Кстати, гидрид лантана достигает состава LaH 3 . Для типичных же гидридов внедрения содержание водорода, как мы теперь знаем не выше чем соответствующее формулам МеН или МеН 2 .

Еще один экспериментальный факт показывает трудности определения характера связи в гидридах внедрения.

Если при низкой температуре удалить из гидрида палладия водород, то удается сохранить искаженную ("расширенную") решетку, которая была у насыщенного водородом палладия. Магнитные свойства (отметьте это), электропроводность и твердость у такого палладия в целом те же, что были у гидрида.

Отсюда следует, что при образовании гидридов внедрения изменение свойств вызвано не только присутствием в них водорода, но и просто изменением межатомных расстояний в решетке.

Приходится признать, что вопрос о природе гидридов внедрения очень сложен и далек от окончательного разрешения.

Человечество всегда славилась тем, что, даже не зная до конца всех аспектов каких-либо явлений, оно умело практически использовать эти явления. Это в полной мере касается гидридов внедрения.

Образование гидридов внедрения в одних случаях сознательно используют на практике, в других случаях, наоборот, его стараются избегать.

Гидриды внедрения сравнительно легко отдают водород при нагревании, а иногда и при низких температурах. Где можно использовать это свойство? Конечно в окислительно-восстановительных процессах. Тем более, что отдаваемый гидридами внедрения водород на какой-то стадии процесса находится в атомарном состоянии. С этим, вероятно, связана химическая активность гидридов внедрения.

Известно, что хорошими катализаторами для реакций, в которых водород присоединяется к какому-либо веществу, являются металлы восьмой группы (железо, никель, платина). Возможно, их каталитическая роль связана с промежуточным образованием непрочных гидридов внедрения. Диссоциируя в дальнейшем, гидриды обеспечивают реакционную систему определенным количеством атомарного водорода.

Например, тонкодисперсная платина (так называемая платиновая чернь) катализирует реакцию окисления водорода кислородом - в ее присутствии эта реакция идет с заметной скоростью даже при комнатной температуре. Это свойство платиновой черни используется в топливных элементах - устройствах, где химические реакции используются для непосредственного получения электрической энергии, минуя получение тепловой (этап горения). На этом же свойстве тонкодисперсной платины основан так называемый водородный электрод - важный инструмент изучения электрохимических свойств растворов.

Образование гидридов внедрения используют для получения особо чистых порошков металлов. Металлический уран и другие актиниды, а также очень чистые титан и ванадий пластичны, и поэтому практически невозможно приготовить из них порошки методом растирания металла. Чтобы лишить металл пластичности, его насыщают водородом (эта операция называется "охрупчивание" металла). Образовавшийся гидрид легко растирают в порошок. Некоторые металлы уже при насыщении водородом сами переходят в порошковое состояние (уран). Затем при нагревании в вакууме, водород удаляется и остается порошок чистого металла.

Термическое разложение некоторых гидридов (UH 3 , TiH 2) можно использовать для получения чистого водорода.

Наиболее интересны области применения гидрида титана. Его применяют для производства пенометаллов (например, пеноалюминия). Для этого гидрид вводят в расплавленный алюминий. При высокой температуре он разлагается, а образовавшиеся пузырьки водорода вспенивают жидкий алюминий.

Гидрид титана можно использовать как восстановитель оксидов некоторых металлов. Он может служить припоем для соединения металлических деталей, и веществом, ускоряющим процесс спекание частиц металла в порошковой металлургии. В последних двух случаях также используются восстановительные свойства гидрида. На поверхности частичек металла, и металлических деталей обычно образуется слой оксидов. Он препятствует сцеплению соседних участков металла. Гидрид титана при нагревании восстанавливает эти оксиды, очищая тем самым поверхность металла.

Гидрид титана применяют для получения некоторых особых сплавов. Если разлагать его на поверхности медного изделия, то образуется тонкий слой сплава меди с титаном. Этот слой придает поверхности изделия особые механические свойства. Таким образом, можно сочетать в одном изделии несколько важных свойств (электропроводность, прочность, твердость, устойчивость к истиранию и т. п.).

Наконец, гидрид титана является весьма эффективным средством для защиты от нейтронов, гамма-лучей и других жестких излучений.

Иногда же с образованием гидридов внедрения напротив приходится бороться. В металлургии, в химической, нефтяной и других отраслях промышленности водород или его соединения находятся под давлением и при высоких температурах. В таких условиях водород может в заметной степени диффундировать через нагретый металл, попросту "уходить" из аппаратуры. Кроме того (и это, пожалуй, важнее всего!), из-за образования гидридов внедрения может сильно понизиться прочность металлической аппаратуры. А это уже таит в себе серьезную опасность при работе с высокими давлениями.

Обычные способы хранения (в баллонах) сжатого или сжиженного водорода — достаточно опасное занятие. Кроме того, водород очень активно проникает через большинство металлов и сплавов, что делает запорную и транспортную арматуру очень дорогостоящей.

Свойство водорода растворяться в металлах известно с 19 века, но только сейчас стали видны перспективы применения гидридов металлов и интерметаллических соединений в качестве компактных хранилищ водорода.

Типы гидридов

Гидриды разделяются на три типа (некоторые гидриды могут иметь несколько свойств связей, например быть металл-ковалентным): металлические, ионные и ковалентные.

Ионные гидриды — как правило, создаются при высоких давлениях (~100 атм.) и при температурах больше 100°С. Типичные представители — гидриды щелочных металлов. Интересной особенностью ионных гидридов является большая степень плотности атомов чем в исходном веществе.

Ковалентные гидриды — практически не находят применения из-за малой стабильности и высокой токсичности используемых металлов и интерметаллидов. Типичный представитель — гидрид бериллия, получаемый методом «мокрой химии» реакцией диметилбериллия с литийалюмогидридом в растворе диэтилового эфира.

Металлические гидриды — можно рассматривать как сплавы металлического водорода, эти соединения отличаются высокой электропроводностью как и материнские металлы. Металлогидриды образуют почти все переходные металлы. В зависимости от типов связей металлические гидриды могут быть ковалентными (например гидрид магния), так и ионными. Практически все металлогидриды требуют высоких температур для дегидрирования (реакции отдачи водорода).

Типичные гидриды металлов

  • Гидрид свинца — PbH4 — бинарное неорганическое химическое соединение свинца с водородом. Очень активен, в присутствии кислорода (на воздухе) самовоспламеняется.
  • Гидроксид цинка — Zn(OH)2 — амфотерный гидроксид. Широко распространён как реагент во многих химических производствах.
  • Гидрид палладия — металл, в котором водород находится между атомами палладия.
  • Гидрид никеля — NiH — часто применяется с добавками лантана LaNi5 для электродов аккумуляторов.

Металлогидриды могут образовывать следующие металлы:
Ni, Fe, Ni, Co, Cu, Pd, Pt, Rh, Pd-Pt, Pd-Rh, Mo-Fe, Ag-Cu, Au-Cu, Cu-Ni, Cu-Pt, Cu-Sn.

Металлы-рекордсмены по объёму запасаемого водорода

Наилучшим металлом для хранения водорода является палладий (Pd). В одном объеме палладия может быть «упаковано» почти 850 объемов водорода. Но перспективность подобного хранилища вызывает сильные сомнения в виду дороговизны этого металла платиновой группы.
Напротив, некоторые металлы (например медь Cu) растворяют всего 0.6 объема водорода на один объём меди.

Гидрид магния (MgH2) может запасать до 7.6% массовых долей водорода в кристаллической решетке. Несмотря на заманчивые значения и малый удельный вес подобных систем очевидным препятствием являются высокие температуры прямой и обратной реакции заряд-разряд и высокие эндотермические потери при дегидрировании соединения (около трети энергии запасённого водорода).
Кристаллическая структура β-фазы гидрида MgH2 (рисунок)

Накопление водорода в металлах

Реакция поглощения водорода металлами и интерметаллидами происходит при большем давлении, чем его выделение. Это определяется остаточными пластическими деформациями кристаллической решетки при переходе от насыщенного α-раствора (изначального вещества) к β-гидриду (вещества с запасённым водородом).

Металлы, не растворяющие водород

Не абсорбируют водород следующие металлы:
Ag, Au, Cd, Pb, Sn, Zn
Некоторые из них находят применение в качестве запорной арматуры для хранения сжатого и сжиженного водорода.

Низкотемпературные металлические гидриды — одни из самых перспективных гидридов. Имеют малые значения потерь при дегидрировании, высокие скорости циклов «заряд-разряд», практически полностью безопасны и малотоксичны. Ограничением является сравнительно малая удельная плотность хранения водорода. Теоретическим максимумом является хранение 3%, а в реальности 1-2% массовых доли водорода.

Применение порошкообразных металлогидридов накладывает ограничения на скорость циклов «заряд-разряд» из-за низкой теплопроводности порошков и требуют особого подхода к конструированию ёмкостей для их хранения. Типичным является введения в ёмкость для хранения областей, способствующих переносу тепла и изготовлению тонких и плоских баллонов. Некоторого увеличения скорости циклов разряда-заряда можно достигнуть введением в металлогидрид инертного связующего, обладающего большой теплопроводностью и высоким порогом инертности к водороду и базовому веществу.

Интерметаллические гидриды

Помимо металлов перспективным является хранение водорода в так называемых «интерметаллических соединениях». Подобные хранилища водорода нашли широкое применение в бытовых металлгидридных аккумуляторах. Преимущество подобных систем заключается в достаточно невысокой стоимости реагентов и малом вреде окружающей среде. В данный момент металлгидридные аккумуляторы практически повсеместно вытеснены литиевыми системами аккумулирования энергии. Максимальная запасаемая энергия промышленных образцов в никель-металл-гидридных аккумуляторах (Ni-MH) равна 75 Вт·ч/кг.

Важным свойством некоторых интерметаллидов является высокая стойкость по отношению к примесям, содержащимся в водороде. Это свойство позволяет эксплуатировать подобные соединения в загрязнённых средах и в присутствии влаги. Многократные циклы «заряд-разряд» при наличии загрязнений и воды в водороде не отравляют рабочее вещество, но уменьшают ёмкость последующих циклов. Уменьшение полезной ёмкости происходит из за загрязнения оксидами металлов базового вещества.

Разделение интерметаллических гидридов

Интерметаллические гидриды разделяются на высокотемпературные (дегидрирующие при комнатной температуре) и высокотемпературные (более 100°С). Давление, при котором происходит разложение гидридной фазы) как правило не больше 1 атм.
В реальной практике применяются сложные интерметаллические гидриды, состоящие из трёх и более элементов.

Типичные интерметаллические гидриды

Гидрид лантана никеля — LaNi5 — гидрид, в котором одна единица LaNi5 содержит более 6 атомов Н. Десорбция водорода из лантана никеля возможна при комнатных температурах. Однако, элементы входящие в этот интерметаллид также весьма недёшевы.
В единице объема лантана-никеля содержится в полтора раза больше водорода, чем в жидком Н2.

Особенности систем интерметалл-водород:

  • высокое содержание водорода в гидриде (масс. %);
  • экзо (эндо)-термичность реакции абсорбции (десорбции) изотопов водорода;
  • изменение объема металлической матрицы в процессе абсорбции — десорбции водорода;
  • обратимая и селективная абсорбция водорода.

Области практического применения интерметаллических гидридов:

  • стационарные хранилища водорода;
  • мобильность хранилища и перевозка водорода;
  • компрессоры;
  • отделение (очистка) водорода;
  • тепловые насосы и кондиционеры.

Примеры применения систем металл-водород:

  • тонкая очистка водорода, всевозможные водородные фильтры;
  • реагенты для порошковой металлургии;
  • замедлители и отражатели в системах ядерного деления (ядерных реакторах);
  • разделение изотопов;
  • термоядерные реакторы;
  • установки диссоциации воды (электролизёры, вихревые камеры получения газообразного водорода);
  • электроды для аккумуляторов на основе вольфрам-водородных систем;
  • металлгидридные аккумуляторы;
  • кондиционеры (тепловые насосы);
  • преобразователи для электростанций (ядерные реакторы, ТЭЦ);
  • транспортировка водорода.

В статье упоминаются металлы: