Амин кислород. Химические свойства аминов




I. По числу углеводородных радикалов в молекуле амина:


Первичные амины R-NH 2


(производные углеводородов, в которых атом водорода замещен на аминогруппу -NH 2),


Вторичные амины R-NH-R"

II. По строению углеводородного радикала:


Алифатические, например: C 2 H 5 -NH 2 этиламин




Предельные первичные амины

Общая формула C n H 2n+1 NH 2 (n ≥ 1); или C n H 2n+3 N (n ≥ 1)

Номенклатура

Названия аминов (особенно вторичных и третичных) обычно дают по радикально-функциональной номенклатуре, перечисляя в алфавитном порядке радикалы и добавляя название класса - амин. Названия первичных аминов по заместительной номенклатуре составляют из названия родоначального углеводорода и суффикса - амин.


CH 3 -NH 2 метанамин (метиламин)


CH 3 -CH 2 -NH 2 этанамин (этиламин)




Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH 2 . Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:


H 2 N-CH 2 -CH 2 -CH 2 -CH 2 -NH 2 1,4-диаминобутан.


Анилин (фениламин) C 6 H 5 NH 2 в соответствии с этим способом называется аминобензолом.

Гомологический ряд предельных аминов

СН 3 NH 2 - метиламин (первичный амин), (СН 3) 2 NH - диметиламин (вторичный амин), (СН 3) 3 N - триметиламин (третичный амин) и т.д.

Изомерия

Структурная изомерия


Углеродного скелета, начиная с С 4 H 9 NH 2:






Положения аминогруппы, начиная с С 3 H 7 NH 2:



Изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте:




Пространственная изомерия


Возможна оптическая изомерия, начиная с С 4 H 9 NH 2:


Оптические (зеркальные) изомеры - пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение (как левая и правая руки).


Физические свойства

Низшие предельные амины - газообразные вещества; средние члены гомологического ряда - жидкости; высшие амины - твердые вещества. Метиламин имеет запах аммиака, другие низшие амины - резкий неприятный запах, напоминающий запах селедочного рассола.


Низшие амины хорошо растворимы в воде, с ростом углеводородного радикала растворимость аминов падает. Амины образуются при гниении органических остатков, содержащих белки. Ряд аминов образуется в организмах человека и животных из аминокислот (биогенные амины) .

Химические свойства

Амины, как и аммиак, проявляют ярко выраженные свойства оснований, что обусловлено наличием в молекулах аминов атома азота, имеющего неподеленную пару электронов.


1. Взаимодействие с водой



Растворы аминов в воде имеют щелочную реакцию среды.


2. Взаимодействие с кислотами (образование солей)



Амины выделяются из их солей при действии щелочей:


Cl + NaOH → СН 3 CH 2 NH 2 + NaCl + Н 2 O


3. Горение аминов


4CH 3 NH 2 + 9O 2 → 4СO 2 + 10Н 2 O + 2N 2


4. Реакция с азотистой кислотой (отличие первичных аминов от вторичных и третичных)


Под действием HNO 2 первичные амины превращаются в спирты с выделением азота:


C 2 H 5 NH 2 + HNO 2 → С 2 Н 5 OН + N 2 + Н 2 O

Способы получения

1. Взаимодействие галогеналканов с аммиаком


СН 3 Вr + 2NH 3 → CH 3 NH 2 + NH 4 Br





2. Взаимодействие спиртов с аммиаком



(Практически в этих реакциях образуется смесь первичных, вторичных, третичных аминов и соли четвертичного аммониевого основания.)

Классификация аминов разнообразна и определяется тем, какой признак строения взят за основу.

В зависимости от числа органических групп, связанных с атомом азота, различают:

первичные амины – одна органическая группа у азота RNH 2

вторичные амины – две органических группы у азота R 2 NH, органические группы могут быть различными R"R"NH

третичные амины – три органических группы у азота R 3 N или R"R"R""N

По типу органической группы, связанной с азотом, различают алифатические СH 3 – N6H 5 – N

По числу аминогрупп в молекуле амины делят на моноамины СH 3 – NН 2 , диамины H 2 N(СH 2) 2 NН 2 , триамины и т.д.

Номенклатура аминов.

к названию органических групп, связанных с азотом, добавляют слово «амин», при этом группы упоминают в алфавитном порядке, например, СН 3 NHС 3 Н 7 – метилпропиламин, СН 3 N(С 6 Н 5) 2 – метилдифениламин. Правила допускают также составлять название, взяв за основу углеводород, в котором аминогруппу рассматривают как заместитель. В таком случае ее положение указывают с помощью числового индекса: С 5 Н 3 С 4 Н 2 С 3 Н(NН 2)С 2 Н 2 С 1 Н 3 – 3-аминопентан (верхние числовые индексы синего цвета указывают порядок нумерации атомов С). Для некоторых аминов сохранились тривиальные (упрощенные) названия: С 6 Н 5 NH 2 – анилин (название по правилам номенклатуры – фениламин).

В некоторых случаях применяют устоявшиеся названия, которые представляют собой искаженные правильные названия: Н 2 NСН 2 СН 2 ОН – моноэтаноламин (правильно – 2-аминоэтанол); (ОНСН 2 СН 2) 2 NH – диэтаноламин, правильное название – бис(2-гидроксиэтил)амин. Тривиальные, искаженные и систематические (составленные по правилам номенклатуры) названия довольно часто сосуществуют в химии.

Физические свойства аминов.

Первые представители ряда аминов – метиламин CH 3 NH 2 , диметиламин (CH 3) 2 NH, триметиламин (CH 3) 3 N и этиламин C 2 H 5 NH 2 – при комнатной температуре газообразные, далее при увеличении числа атомов в R амины становятся жидкостями, а при увеличении длины цепи R до 10 атомов С – кристаллическими веществами. Растворимость аминов в воде убывает по мере увеличения длины цепи R и при возрастании числа органических групп, связанных с азотом (переход к вторичным и третичным аминам). Запах аминов напоминает запах аммиака, высшие (с большими R) амины практически лишены запаха.

Химические свойства аминов.

Отличительная способность аминов – присоединять нейтральные молекулы (например, галогеноводороды HHal, с образованием органоаммониевых солей, подобных аммонийным солям в неорганической химии. Для образования новой связи азот предоставляет неподеленную электронную пару, исполняя роль донора. Участвующий в образовании связи протон Н + (от галогеноводорода) играет роль акцептора (приемника), такую связь называют донорно-акцепторной (рис. 1). Возникшая ковалентная связь N–H полностью эквивалентна имеющимся в амине связям N–H.

Третичные амины также присоединяют HCl, но при нагревании полученной соли в растворе кислоты она распадается, при этом R отщепляется от атома N:

(C 2 H 5) 3 N + HCl ® [(C 2 H 5) 3 N H]Сl

[(C 2 H 5) 3 N H]Сl ® (C 2 H 5) 2 N H + C 2 H 5 Сl

При сравнении этих двух реакций видно, что C 2 H 5 -группа и Н, как бы меняются местами, в итоге из третичного амина образуется вторичный.

Растворяясь в воде, амины по такой же схеме захватывают протон, в результате в растворе появляются ионы ОН – , что соответствует образованию щелочной среды, ее можно обнаружить с помощью обычных индикаторов.

C 2 H 5 N H 2 + H 2 O ® + + OH –

С образованием донорно-акцепторной связи амины могут присоединять не только HCl, но и галогеналкилы RCl, при этом образуется новая связь N–R, которая также эквивалентна уже имеющимся. Если в качестве исходного взять третичный амин, то получается соль тетраалкиламмония (четыре группы R у одного атома N):

(C 2 H 5) 3 N + C 2 H 5 I ® [(C 2 H 5) 4 N ]I

Эти соли, растворяясь в воде и некоторых органических растворителях, диссоциируют (распадаются), образуя ионы:

[(C 2 H 5) 4 N ]I ® [(C 2 H 5) 4 N ] + + I –

Такие растворы, как и все растворы, содержащие ионы, проводят электрический ток. В тетраалкиламмониевых солях можно заменить галоген НО-группой:

[(CH 3) 4 N ]Cl + AgOH ® [(CH 3) 4 N ]OH + AgCl

Получающийся гидроксид тетраметиламмония представляет собой сильное основание, по свойствам близкое к щелочам.

Первичные и вторичные амины взаимодействуют с азотистой кислотой HON=O, однако реагируют они различным образом. Из первичных аминов образуются первичные спирты:

C 2 H 5 N H 2 + HN O 2 ® C 2 H 5 OH + N 2 +H 2 O

В отличие от первичных, вторичные амины образуют с азотистой кислотой желтые, трудно растворимые нитрозамины – соединения, содержащие фрагмент >N–N = O:

(C 2 H 5) 2 N H + HN O 2 ® (C 2 H 5) 2 N –N =O + H 2 O

Третичные амины при обычной температуре с азотистой кислотой не реагируют, таким образом, азотистая кислота является реагентом, позволяющим различить первичные, вторичные и третичные амины.

При конденсации аминов с карбоновыми кислотами образуются амиды кислот – соединения с фрагментом –С(О)N

Конденсация аминов с альдегидами и кетонами приводит к образованию так называемых оснований Шиффа – соединений, содержащих фрагмент –N=C2.

При взаимодействии первичных аминов с фосгеном Cl 2 С=O образуются соединения с группировкой –N=C=O, называемые изоцианатами (рис. 2Г, получение соединения с двумя изоцианатными группами).

Среди ароматических аминов наиболее известен анилин (фениламин) С 6 Н 5 NH 2 . По свойствам он близок к алифатическим аминам, но его основность выражена слабее – в водных растворах он не образует щелочную среду. Как и алифатические амины, с сильными минеральными кислотами он может образовывать аммониевые соли [С 6 Н 5 NH 3 ] + Сl – . При взаимодействии анилина с азотистой кислотой (в присутствии HCl) образуется диазосоединение, содержащее фрагмент R–N=N, оно получается в виде ионной соли, называемой солью диазония (рис. 3А). Таким образом, взаимодействие с азотистой кислотой идет не так, как в случае алифатических аминов. Бензольное ядро в анилине обладает реакционной способностью, характерной для ароматических соединений (см . АРОМАТИЧНОСТЬ), при галогенировании атомы водорода в орто - и пара -положениях к аминогруппе замещаются, получаются хлоранилины с различной степенью замещения (рис. 3Б). Действие серной кислоты приводит к сульфированию в пара -положение к аминогруппе, образуется так называемая сульфаниловая кислота (рис. 3В).

Получение аминов.

При взаимодействии аммиака с галогеналкилами, например RCl, образуется смесь первичных, вторичных и третичных аминов. Образующийся побочный продукт HCl присоединяется к аминам, образуя аммониевую соль, но при избытке аммиака соль разлагается, что позволяет проводить процесс вплоть до образования четвертичных аммониевых солей (рис. 4А). В отличие от алифатических галогеналкилов, арилгалогениды, например, С 6 Н 5 Cl, реагируют с аммиаком с большим трудом, синтез возможен только при катализаторах, содержащих медь. В промышленности алифатические амины получают каталитическим взаимодействием спиртов с NH 3 при 300–500° С и давлении 1–20 МПа, в результате получают смесь первичных, вторичных и третичных аминов(рис. 4Б).

При взаимодействии альдегидов и кетонов с аммонийной солью муравьиной кислоты HCOONH 4 образуются первичные амины (рис. 4В), а реакция альдегидов и кетонов с первичными аминами (в присутствии муравьиной кислоты НСООН) приводит к вторичным аминам (рис. 4Г).

Нитросоединения (содержащие группу –NO 2) при восстановлении образуют первичные амины. Этот метод, предложенный Н.Н.Зининым, мало применяется для алифатических соединений, но важен для получения ароматических аминов и лег в основу промышленного производства анилина (рис. 4Д).

Как отдельные соединения амины применяются мало, например, в быту используется полиэтиленполиамин [-C 2 H 4 NH-] n (торговое название ПЭПА) как отвердитель эпоксидных смол. Основное применение аминов – как промежуточные продукты при получении различных органических веществ. Ведущая роль принадлежит анилину, на основе которого производится широкий спектр анилиновых красителей, причем цветовая «специализация» закладывается уже на стадии получения самого анилина. Сверхчистый анилин без примеси гомологов называют в промышленности «анилин для синего» (имеется в виду цвет будущего красителя). «Анилин для красного» должен содержать, помимо анилина, смесь орто - и пара -толуидина (СН 3 С 6 Н 4 NH 2).

Алифатические диамины – исходные соединения для получения полиамидов, например, найлона (рис. 2), широко применяемого для изготовления волокон, полимерных пленок, а также узлов и деталей в машиностроении (полиамидные зубчатые передачи).

Из алифатических диизоцианатов (рис. 2) получают полиуретаны, которые обладают комплексом технически важных свойств: высокой прочностью в сочетании с эластичностью и очень высоким сопротивлением истиранию (полиуретановые обувные подошвы), а также хорошей адгезией к широкому кругу материалов (полиуретановые клеи). Широко их применяют и во вспененной форме (пенополиуретаны).

На основе сульфаниловой кислоты (рис. 3) синтезируют противовоспалительные лекарственные препараты сульфаниламиды.

Соли диазония (рис. 2) применяют в фоточувствительных материалах для светокопирования, которое позволяет получать изображение, минуя обычную галоидосеребряную фотографию (см . СВЕТОКОПИРОВАНИЕ).

Михаил Левицкий

ТЕМА ЛЕКЦИИ: АМИНЫ И АМИНОСПИРТЫ

Вопросы:

Общая характеристика: строение, классификация, номенклатура.

Методы получения

Физические свойства

Химические свойства

Отдельные представители. Способы идентификации.

Общая характеристика: строение, классификация, номенклатура

Аминами называются производные аммиака, молекуле которого атомы водорода замещены на углеводородные радикалы.

Классификация

1– В зависимости от числа замещенных атомов водорода аммиака различают амины :

первичные содержат аминогруппу аминогруппу (–NH 2), общая формула: R–NH 2 ,

вторичные содержат иминогруппу (–NH),

общая формула: R 1 –NH–R 2

третичные содержат атом азота, общая формула: R 3 –N

Известны также соединения с четвертичным атомом азота: четвертичный гидроксид аммония и его соли.

2– В зависимости от строения радикала амины различают:

– алифатические (предельные и непредельные)

– алициклические

– ароматические (содержащие в ядре аминогруппу или боковой цепи)

– гетероциклические.

Номенклатура, изомерия аминов

1. Названия аминов по рациональной номенклатуре обычно производят от названий вхо­дящих в них углеводородных радикалов с присоединением окончания –амин : метиламин СН 3 –NН 2 , диметиламин СН 3 –NН–СН 3 , триметиламин (СН 3) 3 N, пропиламин СН 3 СН 2 СН 2 –NН 2 , фениламин С 6 Н 5 – NН 2 и т. д.

2. По номенклатуре ИЮПАК аминогруппу рассматривают как функциональную группу и ее название амино- ставят перед на­званием основной цепи:


Изомерия аминов зависит от изомерии радикалов.

Способы получения аминов

Амины могут быть получены различными способами.

А) Действием на аммиак галогеналкилами

2NH 3 + CH 3 I ––® CH 3 – NH 2 + NH 4 I

Б) Каталитическое гидрирование нитробензола молекулярным водородом:

С 6 Н 5 NО 2 ––® С 6 Н 5 NН 2 + Н 2 О

нитробензол кат анилин

В) Получение низших аминов (С 1 –С 4) путем алкилирования спиртами:

350 0 C, Al 2 O 3

R–OH + NH 3 –––––––––––® R–NH 2 +H 2 O



350 0 C, Al 2 O 3

2R–OH + NH 3 –––––––––––® R 2 –NH +2H 2 O

350 0 C, Al 2 O 3

3R–OH + NH 3 –––––––––––® R 3 –N + 3H 2 O

Физические свойства аминов

Метиламин, диметиламин и триметиламин - газы, сред­ние члены ряда аминов - жидкости, высшие - твердые тела. С увеличением молекулярной массы аминов увеличивается их плотность, повышается температура кипения и уменьшается растворимость в воде. Высшие амины в воде нерастворимы. Низшие амины имеют неприятный запах, несколько напоми­нающий запах испорченной рыбы. Высшие амины или не имеют запаха, или обладают очень слабым запахом. Ароматические амины представляют собой бесцветные жидкости или твердые вещества, обладающие неприятным запахом и ядовиты.

Химические свойства аминов

Химическое поведение аминов определяется наличием в молекуле аминогруппы. На внешней электронной оболочке атома азота имеется 5 электронов. В молекуле амина также, как и в молекуле аммиака, атом азота затрачивает на образование трех ковалентных связей три электрона, а два остаются свободными.

Наличие свободной электронной пары у атома азота дает ему возможность присоединять протон, поэтому амины подобны аммиаку, проявляют основные свойства, образуют гидроксиды, соли.

Солеобразование. Амины с кислотами дают соли, кото­рые под действием сильного основания вновь дают свободные амины:


Амины дают соли даже со слабой угольной кислотой:


Как и аммиак, амины обладают основными свойствами что объясняется связыванием протонов в слабо диссоциирующий катион замещенного аммония:


При растворении амина в воде часть протонов воды расходуется на образование катиона; таким образом, в раство­ре появляется избыток гидроксид-ионов, и он имеет щелочные свойства, достаточные для окрашивания растворов лакмуса в синий цвет и фенолфталеина в малиновый. Основность аминов предельного ряда колеблется в очень небольших пределах и близка к основности аммиака.

Эффект метильных групп несколько повышает основ­ность метил- и диметиламина. В случае триметиламина метильные группы уже затрудняют сольватацию образующегося катиона и уменьшают его стабилизацию, а следовательно, и основность.

Соли аминов следует рассматривать как комплексные со­единения. Центральным атомом в них является атом азота, координационное число которого равно четырем. Атомы водорода или алкилы связаны с атомом азота и расположены во внутренней сфере; кислотный остаток расположен во внешней сфере.

Ацилирование аминов. При действии на первичные и вторичные амины некоторых производных органических кис­лот (галогенангидридов, ангидридов и др.) образуются амиды:


Вторичные амины с азотистой кислотой дают нитрозоамины - желтоватые жидкости, мало растворимые в воде:


Третичные амины устойчивы к действию разбавленной азотистой кислоты на холоду (образуют соли азотистой кисло­ты), в более жестких условиях один из радикалов отщепляется и образуется нитрозоамин.

Диамины

Диамины играют важную роль в биологических процес­сах. Как правило, они легко растворимы в воде, обладают ха­рактерным запахом, имеют сильно щелочную реакцию, взаи­модействуют с С0 2 воздуха. Диамины образуют устойчивые со­ли с двумя эквивалентами кислоты.

Этилендиамин (1,2-этандиамин) H 2 NCH 2 СН 2 NН 2 . Он является простейшим диамином; может быть получен дейст­вием аммиака на этиленбромид:


Тетраметилендиамин (1,4-бутандиамин), или путресцин, NН 2 СН 2 СН 2 СН 2 СН 2 NH 2 и пентаметилендиамин (1,5-пентандиамин) NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 , или када­верин. Они были открыты в продуктах разложения белковых веществ; образуются при декарбоксилировании диаминокислот и названы птомаинами (от греч.- труп), их счита­ли ранее «трупными ядами». В настоящее время выяснено, что ядовитость гниющих белков вызвана не птомаинами, а при­сутствием других веществ.

Путресцин и кадаверин образуются в результате жизнеде­ятельности многих микроорганизмов (например, возбудителей столбняка и холеры) и грибков; они встречаются в сыре, спо­рынье, мухоморе, пивных дрожжах.

Некоторые диамины применяются в качестве сырья для получения полиамидных волокон и пластмасс. Так, из гекса-метилендиамина NН 2 СН 2 СН 2 СН 2 СН 2 СН 2 СН 2 NН 2 получено весьма ценное синтетическое волокно - найлон (США) или анид (Россия).

Аминоспирты

Аминоспирты - соединения со смешанными функциями, в молекуле которых содержатся амино- и оксигруппы.

Аминоэтанол (этаноламин) НО-СН 2 СН 2 -NH 2 , или коламин.

Этаноламин - густая маслянистая жидкость, смешивает­ся с водой во всех отношениях, обладает сильными щелочны­ми свойствами. Hаряду с моноэтаноламином получаются также диэтаноламин и триэтаноламин:


Холин входит в состав лецитинов - жироподобных ве­ществ, весьма распространенных в животных и растительных организмах, и может быть выделен из них. Холин представляет собой кристаллическую, весьма гиг­роскопичную, легко расплывающуюся на воздухе массу. Он обладает сильными щелочными свойствами и с кислотами лег­ко образует соли.

При ацилировании холина уксусным ангидридом образу­ется холинацетат, называемый также ацетилхолином:



Ацетилхолин играет крайне важную биохимическую роль, так как является медиатором (посредником), передающим воз­буждение от нервных рецепторов к мышцам.

Так как амины, являясь производными аммиака, имеют сходное с ним строение (т.е. имеют неподеленную пару электронов в атоме азота), то они и проявляют подобные ему свойства. Т.е. амины, как и аммиак, являются основаниями, так как атом азота может предоставлять электронную пару для образования связи с электроннедостаточными частицами по донорно-акцепторному механизму (соответствие определению основности по Льюису).

I. Свойства аминов как оснований (акцепторов протонов)

1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

CH 3 NH 2 + H 2 O CH 3 NH 3 + + OH −

Анилин с водой практически не реагирует.

Водные растворы имеют щелочной характер:

Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота.

Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I -эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном.

2. Взаимодействуя с кислотами, амины образуют соли:

C 6 H 5 NH 2 + HCl → (C 6 H 5 NH 3)Cl

хлорид фениламмония

2CH 3 NH 2 + H 2 SO 4 → (CH 3 NH 3) 2 SO 4

сульфат метиламмония

Соли аминов – твердые вещества, хорошо растворимые в воде и плохо растворимы в неполярных жидкостях. При реакции с щелочами выделяются свободные амины:

Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с π-электронами ароматического ядра, что уменьшает электронную плотность на атоме азота (-М-эффект). Напротив, алкильная группа является хорошим донором электронной плотности (+I-эффект)..

или

Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот. Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H 2 SO 4), а его водный раствор не окрашивает лакмус в синий цвет.

У атома азота в молекулах аминов есть неподеленная пара электронов, которая может участвовать в образовании связи по донорно-акцепторному механизму.

анилин аммиак первичный амин вторичный амин третичный амин

электронная плотность на атоме азота возрастает.

Из-за наличия в молекулах неподеленной пары электронов амины, как и аммиак, проявляют основные свойства.

анилин аммиак первичный амин вторичный амин

основные свойства усиливаются, из-за влияния типа и числа радикалов.

C 6 H 5 NH 2 < NH 3 < RNH 2 < R 2 NH < R 3 N (в газовой фазе)

II. Окисление аминов

Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени. Ароматические амины самопроизвольно окисляются на воздухе. Так, анилин быстро буреет на воздухе вследствие окисления.

4СH 3 NH 2 + 9O 2 → 4CO 2 + 10H 2 O + 2N 2

4C 6 H 5 NH 2 + 31O 2 → 24CO 2 + 14H 2 O + 2N 2

III. Взаимодействие с азотистой кислотой

Азотистая кислота HNO 2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO 2 , как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:

KNO 2 + HCl → НNO 2 + KCl

или NO 2 − + H + → НNO 2

Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.

· Первичные алифатические амины c HNO 2 образуют спирты:

R-NH 2 + HNO 2 → R-OH + N 2 + H 2 O

  • Огромное значение имеет реакция диазотирования первичных ароматических аминов под действием азотистой кислоты, получаемой по реакции нитрита натрия с соляной кислотой. А в последствии образуется фенол:

· Вторичные амины (алифатические и ароматические) под действием HNO 2 превращаются в N-нитрозопроизводные (вещества с характерным запахом):

R 2 NH + H-O-N=O → R 2 N-N=O + H 2 O

алкилнитрозамин

· Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.

IV. Особые свойства:

1. Образование комплексных соединений с переходными металлами:

2. Присоединение алкилгалогенидов Амины присоединяют галогеналканы с образованием соли:

Обрабатывая получившуюся соль щелочью, можно получить свободный амин:

V. Ароматическое электрофильное замещение в ароматических аминах (реакция анилина с бромной водой или с азотной кислотой):

В ароматических аминах аминогруппа облегчает замещение в орто- и пара-положениях бензольного кольца. Поэтому галогенирование анилина происходит быстро и в отсутствие катализаторов, причем замещаются сразу три атома водорода бензольного кольца, и выпадает белый осадок 2,4,6-триброманилина:

Эта реакция бромной водой используется как качественная реакция на анилин.

В этих реакциях (бромирование и нитрование) преимущественно образуются орто - и пара -производные.

4. Способы получения аминов.

1. Реакция Гофмана . Один из первых методов получения первичных аминов − алкилирование аммиака алкилгалогенидами:

Это не самый лучший метод, так как в результате получается смесь аминов всех степеней замещения:

и т.д. Алкилирующими агентами могут выступать не только алкилгалогениды, но и спирты. Для этого смесь аммиака и спирта пропускают над оксидом алюминия при высокой температуре.

2. Реакция Зинина - удобный способ получения ароматических аминов при восстановлении ароматических нитросоединений. В качестве восстановителей используются: H 2 (на катализаторе). Иногда водород генерируют непосредственно в момент реакции, для чего обрабатывают металлы (цинк, железо) разбавленной кислотой.

2HCl + Fe (стружка) → FeCl 2 + 2H

C 6 H 5 NO 2 + 6[H] C 6 H 5 NH 2 + 2H 2 O.

В промышленности эта реакция протекает при нагревании нитробензола с водяным паром в присутствии железа. В лаборатории водород "в момент выделения" образуется по реакции цинка со щелочью или железа с соляной кислотой. В последнем случае образуется хлорид анилиния.

3. Восстановление нитрилов. Используют LiAlH 4:

4. Ферментатичное декарбоксилирование аминокислот:

5. Применение аминов.

Амины применяются в фармацевтической промышленности и органическом синтезе (CH 3 NH 2 , (CH 3) 2 NH, (C 2 H 5) 2 NH и др.); при производстве найлона (NH 2 -(CH 2) 6 -NH 2 − гексаметилендиамин); в качестве сырья для производства красителей и пластмасс (анилин), а также пестицидов.

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 10 класс. Профильный уровень: учебник для общеобразовательных учрждений; Дрофа, Москва, 2005г.;
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г;
  3. Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001;
  4. https://www.calc.ru/Aminy-Svoystva-Aminov.html
  5. http://www.yaklass.ru/materiali?mode=lsntheme&themeid=144
  6. http://www.chemel.ru/2008-05-24-19-21-00/2008-06-01-16-50-05/193-2008-06-30-20-47-29.html
  7. http://cnit.ssau.ru/organics/chem5/n232.htm

Амины являются единственным классом органических соединений обладающих заметной основностью. Однако амины - слабые основания. Теперь будет полезным вернуться к табл. 12-1, чтобы вспомнить три определения кислот и оснований. В соответствии с тремя определениями основности можно выделить три аспекта химического поведения аминов.

1. Амины реагируют с кислотами, выступая как акцепторы протонов:

Поэтому амины являются основаниями Бренстеда. 2. Амины являются донорами электронной пары (основаниями Льюиса):

3. Водные растворы аминов имеют следовательно, амины при взаимодействии с водой способны генерировать гидроксид-анионы

Поэтому амины являются основаниями Аррениуса. Хотя все амины являются слабыми основаниями, их основность зависит от природы и числа углеводородных радикалов, связанных с атомом азота. Алкиламины гораздо основнее, чем ароматические амины. Среди алкиламинов наиболее основными являются вторичные, несколько менее основны первичные, затем идут третичные амины и аммиак. В целом основность убывает в ряду:

Мерой основности вещества является константа основности которая представляет собой константу равновесия взаимодействия амина с водой (см. выше определение основности по Аррениусу). Поскольку вода присутствует в большом избытке, ее концентрация не фигурирует в выражении константы основности:

Чем сильнее основание, тем большее число протонов будет оторвано от молекул воды и тем выше будет концентрация гидроксид-ионов в растворе. Таким образом, более сильные основания характеризуются

большими значениями К Значения для некоторых аминов приведены ниже:

Эти величины иллюстрируют ту связь основности аминов с их строением, о которой шла речь выше. Наиболее сильным основанием является вторичный диметиламин, а наиболее слабым-ароматический амин анилин.

Ароматические амины являются весьма слабыми основаниями, поскольку неподеленная электронная пара атома азота (которая и определяет основные свойства аминов) взаимодействует с -электронным облаком ароматического ядра и вследствие этого менее доступна для протона (или другой кислоты). Более высокая основность вторичных аминов по сравнению с первичными объясняется тем, что алкильные группы, благодаря наличию у них положительного индуктивного эффекта, подают электроны по -связям на атом азота, что облегчает обобществление неподеленной электронной пары. Две алкильные группы подают электроны на атом азота сильнее, чем одна, поэтому вторичные амины являются более сильными основаниями. Исходя из этого, можно было бы ожидать, что третичные амины - еще более сильные основания, чем вторичные. Однако это предположение оправдывается только для газовой фазы, а в водном растворе основность третичных аминов не столь велика. Вероятно, это объясняется эффектами сольватации.