Все химические процессы. Химические процессы




  • 7.Принцип квантовой механики: Дискретность энергии, корпускулярно-волновой дуализм, принципы неопределенности Гейзенберга.
  • 13. Периодический закон д.И. Менделеева. Периодичность в изменении различных свойств элементов (потенциал ионизации, сродство к электрону, атомные радиусы и т.Д.)
  • 14. Сходство и различие химических свойств элементов главных и побочных подгрупп в связи с электронным строением атома.
  • 15. Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи
  • 16. Природа химической связи. Энергетические эффекты в процессе образования химической связи
  • 17. Основные положения метода вс. Обменный и донорно- акцепторный механизмы образования ковалентной связи
  • 18. Валентные возможности атомов элементов в основном и в возбужденном состоянии
  • 20. Насыщаемость ковалентной связи. Понятие валентности.
  • 21. Полярность ковалентной связи. Теория гибридизации. Виды гибридизации. Примеры.
  • 22. Полярность ковалентной связи. Дипольный момент.
  • 23. Достоинства и недостатки метода вс.
  • 24. Метод молекулярных орбиталей. Основные понятия.
  • 26. Ионная связь как предельный случай ковалентной полярной связи. Свойства ионной связи. Основные виды кристаллических решеток для соединений с ионной связью.
  • 27. Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
  • 28. Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
  • 29. Водородная связь.
  • 30. Основные типы кристаллических решеток. Особенности каждого типа.
  • 31. Законы термохимии. Следствия из законов Гесса.
  • 32. Понятие о внутренней энергии системы, энтальпии и энтропии
  • 33. Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
  • 34. Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
  • 35. Факторы, влияющие на скорость химической реакции
  • 36. Влияние температуры на скорость химических реакций. Правило Вант- Гоффа. Энергия активации. Уравнение Аррениуса.
  • 37. Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
  • 38. Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
  • 39. Обратимые процессы. Химическое равновесие. Константа равновесия.
  • 41. Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
  • 42. Способы выражения концентрации растворов.
  • 43. Закон Рауля
  • 44. Осмос. Осмотическое давление. Закон Вант-Гоффа.
  • 45. Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
  • 47. Реакция в растворах электролитов, их направленность. Смещение ионных равновесий.
  • 48. Ионное произведение воды. Водородный показатель как химическая характеристика раствора.
  • 49. Гетерогенные равновесия в растворах электролитов. Произведение растворимости
  • 50. Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая). Константа гидролиза. Практическое значение в процессах коррозии металла.
  • 51. Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
  • 52. Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
  • 53. Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
  • 56. Электролиз растворов и расплавов. Последовательность электродных процессов. Перенапряжение и поляризация.
  • 57. Взаимодействие металлов с кислотами и щелочами.
  • 58. Коррозия металлов в растворах солей.
  • 59. Применение электролиза в промышленности.
  • 61. Методы борьбы с коррозией.
  • 41. Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.

    Раствор – гомогенная система, состоящая из двух или более компонентов (составных частей), относительные количества которых могут изменяться в широких пределах. Всякий раствор состоит из растворенных веществ и растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов. Обычно растворителем считают тот компонент, который в чистом виде существует в том же агрегатном состоянии, что и полученный раствор. Если же оба компонента до растворения находились в одинаковом агрегатном состоянии, то растворителем считается компонент, находящийся в большем количестве. Раствор, находящийся в равновесии с растворяющимся веществом, называется насыщенным раствором. Ненасыщенные растворы с низким содержанием растворимого вещества – разбавленные; с высоким – концентрированные.

    1. Тепловой эффект растворения. В зависимости от природы веществ растворение сопровождается выделением (KOH) или поглощением (NH4NO3) теплоты. 2. Изменение объема 3. Изменение цвета раствора

    Изменение энтальпии и энтропии при растворении: растворение рассматривается как совокупность физических и химических явлений, выделяя при этом 3 основных процесса: 1. Разрушение химических и межмолекулярных связей в растворяющихся веществах, требующее затрат энергии (энтальпия растет). 2. Химическое взаимодействие растворителя с растворяющимся веществом, выделение энергии (энтальпия уменьшается). 3. Самопроизвольное перемешивание раствора, связанное с диффузией и требующее затраты энергии. При растворении жидких и твердых веществ энтропия системы обычно возрастает, так как растворяемые вещества из более упорядоченного состояния переходят в менее упорядоченное. При растворении газов в жидкостях энтропия уменьшается, так как растворимое вещество переходит из большего объема в меньший.

    42. Способы выражения концентрации растворов.

    Концентрация – количество вещества на единицу массы объема раствора или растворителя.

    Массовая доля – отношение массы растворенного вещества к массе раствора. w=(mb/m)*100%

    Объемная доля – отношение объема вещества к объему всего раствора

    Молярная доля – отношение количества растворенного вещества к сумме количеств всех веществ, составляющих раствор. w=nb/(na+nb) nb=mb/µb

    Молярная концентрация (молярность) – отношение количества растворенного вещества к объему раствора. w=nb/V

    Моляльная концентрация (моляльность) – отношение количества растворенного вещества к массе растворителя. w=nb/ma

    Молярная концентрация эквивалентов – отношение числа эквивалентов растворенного вещества к объему раствора. w=nэ/V

    43. Закон Рауля

    При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. Опыт показывает, что при растворении в жидкости какого-либо вещества давление насыщенного пара этой жидкости понижается. Таким образом, давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. Разность между этими величинами принято называть понижением давления пара над раствором. Отношение величины этого понижения к давлению насыщенного пара над чистым растворителем называется относительным понижением давления пара над раствором. Закон Рауля: Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества. Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле-Шателье. Изначально жидкость и пар находятся в равновесии. При растворении в жидкости какого-либо вещества концентрация молекул растворителя уменьшается. Система стремится компенсировать это воздействие. Начинается конденсация пара и новое равновесие устанавливается при более низком давлении насыщенного пара.

    О значительнейших вещах не будем судить слишком быстро.

    Гераклит

    Химический процесс (лат. «processus» - продвижение) представляет собой последовательную смену состояний вещества, тесную связь следующих друг за другом стадий развития, представляющую непрерывное единое движение. Учение о химических процессах - это область науки в которой существует наиболее глубокое взаимопроникновение физики химии и биологии. Химические процессы подразделяются на гомо- и гетерогенные (в зависимости от агрегатного состояния реагирующих систем) экзо- и эндотермические (в зависимости от количества выделяющейс и поглощающейся теплоты), окислительные, восстановительные (в зависимости от отношения к кислороду) и др.

    Все процессы можно объединить в три большие группы:

    • 1. Самопроизвольные процессы, которые можно использовать для получения энергии или совершения работы. Условиями протекания самопроизвольных процессов являются: а) в изолированной системе, т.е. в системе для которой исключен любой материальный или энергетический обме с окружающей средой, сумма всех видов энергии есть величина постоянная; б) изменение энтальпии (тепловой эффект процесса, ДП) зависит только от вида и состояния исходных веществ и продуктов и не зависи от пути перехода. Такая зависимость носит название закона Гесса, сформулированного Гессом в 1840 г.
    • 2. Процессы, для осуществления которых требуется затрата энергии ил совершение работы.
    • 3. Самоорганизация химической системы, т.е. самопроизвольный процесс, проходящий без изменения энергетического запаса системы, совершается только в направлении, при котором порядок в системе уменьшается т.е. где беспорядок возрастает (Д5 > 0).

    Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций. Процесс превращения одних вещест в другие называется химической реакцией. К условиям протекания химических процессов относятся прежде всего термодинамические факторы характеризующие зависимость реакций от температуры, давления п некоторых других условий. На скорость химической реакции также влияю следующие условия и параметры:

    • 1) природа реагирующих веществ (например, щелочные металлы растворяются в воде с образованием щелочей и выделением водорода и реакция протекает при обычных условиях моментально; цинк, железо и други реагируют медленно и с образованием оксидов, а благородные металл не реагируют вообще);
    • 2) температура (при повышении температуры на каждые 10 °С скорост реакции увеличивается в 2-4 раза - правило Вант-Гоффа). Со многим веществами кислород начинает реагировать с заметной скоростью уже пр обыкновенной температуре (медленное окисление). При повышении температуры начинается бурная реакция (горение);
    • 3) концентрация (для веществ в растворенном состоянии и газов скорость химических реакций зависит от концентрации реагирующих веществ Горение веществ в чистом кислороде происходит интенсивнее, чем в воздухе, где концентрация кислорода почти в 5 раз меньше). Здесь справедли закон действующих масс: при постоянной температуре скорость химической реакции прямо пропорционально произведению концентрации реагирующих веществ;
    • 4) площадь поверхности реагирования (для веществ в твердом состоянии - скорость прямо пропорциональна поверхности реагирующи веществ. Железо и сера в твердом состоянии реагируют достаточно быстр лишь при предварительном измельчении и перемешивании: горение хвороста и полена);
    • 5) катализатор (скорость реакции зависит от катализаторов, веществ которые ускоряют химические реакции, по сами при этом не расходуются Разложение бертолетовой соли и пероксида водорода ускоряется в присутствии оксида марганца (IV) и др.).

    Для вступления в химическую реакцию необходимо преодолеть некоторый энергетический барьер, соответствующий энергии активации, возможность накопления которой сильно зависит от температуры. Многие реакции долгое время не могут закончиться. В таком случае говорят, чт реакция достигла химического равновесия. Химическая система находитс в состоянии равновесия, если выполняются следующие три условия:

    • 1) в системе не происходит энергетических изменений (АН = 0);
    • 2) не происходит изменений степени беспорядка (AS = 0);
    • 3) не изменяется изобарный потенциал (А/ = 0).

    Вант-Гофф, используя термодинамический подход, классифицировал химические реакции, а также сформулировал основные положения химической кинетики. Химическая кинетика изучает скорости протекания химических реакций. Ле Шателье сформулировал закон смещени химического равновесия в химических реакциях под влиянием внешни факторов - температуры, давления и др. Согласно принципу Ле Шателье: если на систему, находящуюся в состоянии химического равновесия оказывается внешнее воздействие (изменяется температура, давление ил концентрация), то положение равновесия химической реакции смещаетс в ту сторону, которая ослабляет данное воздействие.

    Химические реакции классифицируют по изменению качества исходных веществ и продуктов реакции на следующие виды:

    • - реакции соединения - реакции, при которых из нескольких вещест образуется одно вещество, более сложное, чем исходные;
    • - разложения - реакции, при которых из одного сложного веществ образуется несколько веществ;
    • - замещения - реакции, при которых атомы одного элемента замещаю атом другого элемента в сложном веществе и при этом образуются дв новых - простое и сложное;
    • - обмена - реакции, при которых реагирующие вещества обмениваются своими составными частями, в результате чего из двух сложны веществ образуются два новых сложных вещества.

    По тепловому эффекту химические реакции можно подразделить на экзотермические - с выделением теплоты и эндотермические - с поглощением теплоты. С учетом явления катализа реакции могут быть каталитические - с применением катализаторов и иекаталитические - бе применения катализаторов. По признаку обратимости реакции деля на обратимые и необратимые.

    Оствальд, исследуя условия химического равновесия, пришел к открытию явления катализа. Оказалось, что в большой степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий. Явление катализа - селективного ускорения химических процессов в присутстви веществ (катализаторов), которые принимают участие в промежуточны процессах, но регенерируются в конце реакции, широко используетс в промышленности. Например, промышленное получение аммиака, контактный способ производства серной кислоты и многие другие. Впервы синтез аммиака был осуществлен в 1918 г. на основе работ Габера, Бош и Митташа с помощью катализатора, представляющего собой металлическое железо с добавками окисей калия и алюминия, при температуре 450-550 °С и давлении 300-1000 атм. В настоящее время большое внимание уделяют применению металлорганических и металлокомплексны катализаторов, отличающихся высокой селективностью и избирательностью действия. Тот же самый процесс синтеза аммиака при использовании метал л органического катализатора удалось осуществить при обычно температуре (18 °С) и нормальном атмосферном давлении, что открывае большие перспективы в производстве минеральных азотных удобрений Особенно велика роль катализа в органическом синтезе. Крупнейши успехом в этом направлении надо признать получение искусственног и синтетического каучука из этилового спирта, осуществленное советски академиком С. В. Лебедевым в 20-х гг. XX в.

    Ферменты, или биокатализаторы, играют исключительную роль в биологических процессах и в технологии веществ растительного и животного происхождения, а также в медицине. Сегодня известно свыше 750 ферментов, и их число ежегодно увеличивается. Ферменты являются бифункциональными и полифункциональными катализаторами, так как здесь имее место согласованное воздействие двух или нескольких групп катализаторо различной природы в составе активного центра фермента на поляризаци определенных связей субстрата. Эта же концепция лежит в основе каталитического действия фермента и теории кинетики действия ферментов Главное отличие ферментов от других катализаторов заключается в исключительно высокой активности и резко выраженной специфичности.

    Самоорганизация химических систем в биологические, их единство и взаимосвязь подтверждает синтез органических соединений из неорганических. В 1824 г. немецкий химик Ф. Велер, ученик Берцелиуса, впервые получи из неорганического дициана МССЫ при нагревании его с водой щавелеву кислоту НООС-СООН - органическое соединение. Таким же образо из цианистого аммония было получено новое органическое вещество -мочевина (карбамид). В 1854 г. во Франции М. Бертло синтетическим путе получил жир. Наибольшим успехом химии в 50-60 гг. XX в. явился первы синтез простых белков - гормона инсулина и фермента рибонуклеазы.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Введение

    Под влиянием новых требований производства возникло учение о химических процессах, в котором учитывается изменение свойств вещества под влиянием температуры, давления, растворителей и других факторов. После этого химия становится наукой уже не только и не столько о веществах как законченных предметах, но и наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила создание производства синтетических материалов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Производство искусственных волокон, каучуков, этилового спирта и многих растворителей стало базироваться на нефтяном сырье, а производство азотных удобрений -- на основе азота воздуха. Появилась технология нефтехимических производств с ее поточными системами, обеспечивающими непрерывные высокопроизводительные процессы. химический реакция электрон

    Так, еще в 1935 г. такие материалы, как кожа, меха, резина, волокна, моющие средства, олифа, лаки, уксусная кислота, этиловый спирт, производились всецело из животного и растительного сырья, в том числе из пищевого. На это расходовались десятки миллионов тонн зерна, картофеля, жиров, сырой кожи и т.д. Но уже в 1960-е гг. 100% технического спирта, 80% моющих средств, 90% олифы и лаков, 40% волокон, 70% каучука и около 25% кожевенных материалов изготовлялись на основе газового и нефтяного сырья. Помимо этого, химия дает ежегодно сотни тысяч тонн мочевины и нефтяного белка в качестве корма скоту и около 200 млн. т удобрений.

    Столь впечатляющие успехи были достигнуты на основе учения о химических процессах -- области науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основу данного учения положены химическая термодинамика и кинетика, поэтому этот раздел науки в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов -- лауреат Нобелевской премии, основатель химической физики. Он в своей Нобелевской лекции 1965 г. заявил, что химический процесс -- это то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к сложным, многоуровневым живым системам. Ведь любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Поэтому химия становится мостом от объектов физики к объектам биологии.

    Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций. Эти условия могут оказывать воздействие на характер и результаты химических реакций.

    Подавляющее большинство химических реакций находится во власти стихии. Конечно, есть реакции, которые не требуют особых средств управления или особых условий. Таковы всем известные реакции кислотно-основного взаимодействия (нейтрализации). Однако подавляющее большинство реакций являются трудно контролируемыми. Есть реакции, которые просто не удается осуществить, хотя они в принципе осуществимы. Существуют реакции, которые трудно остановить: горения и взрывы. И, наконец, встречаются реакции, которые трудно ввести в одно желательное русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. Поэтому важнейшей задачей для химиков становится умение управлять химическими процессами, добиваясь нужных результатов.

    Методы управления химическими процессами

    В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические.

    Термодинамические методы влияют на смещение химического равновесия реакции. Кинетические методы влияют на скорость протекания химической реакции.

    Выделение химической термодинамики в самостоятельное направление обычно связывают с появлением в 1884 г. книги голландского химика Я. Вант-Гоффа «Очерки по химической динамике». В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии, называются экзотермическими реакциями. В них энергия высвобождается одновременно с уменьшением внутренней энергии системы. Существуют также эндотермические реакции, протекающие с поглощением энергии. В этих реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы.

    Тогда же французский химик А. Ле-Шателье сформулировал свой знаменитый принцип подвижного равновесия, вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических методов.

    Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий протекания процесса. Существует много реакций, равновесие в которых смещено в сторону образования конечных продуктов: к ним относятся реакция нейтрализации, реакции с удалением готовых продуктов в виде газов или осадков.

    Однако существует немало химических реакций, равновесие в которых смещено влево, в сторону образования исходных веществ. Чтобы их осуществить, требуются особые термодинамические рычаги -- увеличение температуры и давления (если реакция происходит в газовой фазе), а также концентрации реагирующих веществ (если реакция протекает в жидкой фазе).

    Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость.

    Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурно-кинетических факторов -- строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п. Задача исследования химических реакций является очень сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько. В этом случае наиболее целесообразно поэтапное решение, при котором вначале выделяется наиболее сильное действие какого-нибудь одного из «третьих тел», чаще всего катализатора.

    Кроме того, следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.

    Также на интенсивность химических процессов оказывают влияние случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, а в других -- как инертные. Примеси могут оказывать как каталитическое, так и ингибирующее воздействие. Поэтому для управления химическим процессом в реагирующие вещества вносятся те или иные добавки.

    Таким образом, влияние «третьих тел» на ход химических реакций может быть сведено к катализу, т.е. положительному воздействию на химический процесс, или ингибированию, сдерживающему процесс.

    Как уже отмечалось выше, способность химических элементов к взаимосвязи определяется не только их молекулярной структурой, но и условиями, при которых происходит соединение. Эти условия оказывают воздействие на результат химических реакций. Наибольшее воздействие испытывают при этом вещества с переменным составом, у которых связи между отдельными компонентами слабее. Именно на реакцию таких веществ оказывают сильное влияние различные катализаторы.

    Катализ -- ускорение химической реакции в присутствии особых веществ -- катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав конечных продуктов. Катализ был открыт в 1812 г. русским химиком К.С. Кирхгофом. Каталитические процессы различаются по своей физической и химической природе на следующие типы:

    * гетерогенный катализ -- химическая реакция взаимодействия жидких или газообразных реагентов идет на поверхности твердого катализатора;

    * гомогенный катализ -- химическая реакция идет либо в газовой смеси, либо в жидкости, где растворены как катализатор, так и реагенты;

    * электрокатализ -- реакция идет на поверхности электрода в контакте с раствором и под действием электрического тока;

    * фотокатализ -- реакция идет на поверхности твердого тела или в жидком растворе и стимулируется энергией поглощенного излучения.

    Наибольшее распространение имеет гетерогенный катализ, -- с его помощью осуществляется 80% всех каталитических реакций в современной химии.

    Применение катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным использовать в качестве сырья для органического синтеза парафины и циклопарафины, до сих пор считавшиеся «химическими мертвецами». Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (производство неорганических кислот, оснований и солей) и «тяжелого» органического синтеза, включая получение горюче-смазочных материалов, базируется на катализе. Последнее время тонкий органический синтез становится все более каталитическим. 60--80% всей химии основано на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.

    Долгое время сам катализ оставался загадкой природы, вызывая к жизни самые разнообразные теории, как чисто химические, так и физические. Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали ученых на новые эксперименты. Все дело в том, что для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для реакции синтеза аммиака в 1913--1914 гг. немецкие химики испробовали в качестве катализаторов более 20 тысяч химических соединений, следуя периодической системе элементов и разнообразно сочетая их.

    Сегодня можно сделать некоторые выводы о сущности катализа.

    1. Реагирующие вещества вступают в контакт с катализатором, взаимодействуют с ним, в результате чего происходит ослабление химических связей. Если реакция происходит в отсутствие катализатора, то активация молекул реагирующих веществ должна происходить за счет подачи в реактор энергии извне.

    2. В общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение ослабленных химических связей.

    3. В подавляющем большинстве случаев в качестве катализаторов выступают соединения бертоллидного типа с переменным составом, отличающиеся наличием ослабленных химических связей или даже свободных валентностей, что придает им высокую химическую активность. Молекулы соединений бертоллидного типа содержат широкий набор энергетически неоднородных связей или даже свободные атомы на поверхности.

    4. Следствиями взаимодействия реагентов с катализатором являются ход реакции в заданном направлении и увеличение скорости реакции, так как на поверхности катализатора увеличивается число встреч реагирующих молекул. Кроме того, катализатор захватывает некоторую часть энергии экзотермической реакции для энергетической подпитки все новых актов реакции и ее общего ускорения.

    На современном этапе своего развития химия открыла множество эффективных катализаторов. Среди них -- ионнообменные смолы, металлорганические соединения, мембранные катализаторы. Каталитическими свойствами обладают многие химические элементы периодической системы, но важнейшую роль играют металлы платиновой группы и редкоземельные металлы.

    С участием катализаторов скорость некоторых реакций возрастает в 10 млрд. раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).

    Направление развития учения о химических процессах

    В современных условиях одно из важнейших направлений развития учения о химических процессах -- создание методов управления этими процессами, поэтому химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

    Химия плазмы

    Химия плазмы изучает химические процессы в низкотемпературной плазме при температурах от 1000 до 10 000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями протекания химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около 10-13 с при почти полном отсутствии обратимости реакции. Скорость аналогичных химических процессов в обычных реакторах из-за обратимости снижается в тысячи раз. Поэтому плазмохимические процессы очень производительны. Например, производительность метанового плазмохимического реактора (его размеры: длина -- 65 см, диаметр -- 15 см) составляет 75 т ацетилена в сутки. В этом реакторе при температуре 3000--3500°С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен.

    Плазменная химия в последнее время все больше внедряется в промышленное производство. Уже созданы технологии производства сырья для порошковой металлургии, разработаны методы синтеза для целого ряда химических соединений. В 1970-е гг. были созданы плазменные сталеплавильные печи, позволяющие получать самые высококачественные металлы. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается в несколько раз.

    Плазмохимия позволяет синтезировать ранее неизвестные материалы, такие, как металлобетон, в котором в качестве связующего элемента используются различные металлы. Металлобетон образуется при сплавлении частиц горной породы и прочном сжатии их с металлом. По своим качествам он превосходит обычный бетон в десятки и сотни раз.

    Радиационная химия

    Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

    Наиболее важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе получение полимербетонов путем пропитки обычного бетона каким-либо полимером с его последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозионной стойкостью.

    Химия высоких давлений и температур

    Принципиально новой и исключительно важной областью учения о химических процессах является само распространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно их производство осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре (1200--2000°С) металлических порошков. Само распространяющийся синтез происходит гораздо проще: он основан на горении одного металла в другом или горении металла в азоте, углероде, кремнии и т.п.

    Давно известно, что процесс горения представляет собой соединение кислорода с горючим веществом, поэтому горение -- это реакция окисления горючего вещества. При этом происходит перемещение электронов от атомов окисляемого вещества к атомам кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях. На этом выводе и основан само распространяющийся высокотемпературный синтез -- тепловой процесс горения в твердых телах. Он представляет собой, например, горение порошка титана в порошке бора, или порошка циркония в порошке кремния. В результате такого синтеза получаются сотни тугоплавких соединений самого высокого качества.

    Очень важно, что данная технология не требует громоздких процессов, отличается высокой технологичностью и легко поддается автоматизации.

    Химия высоких давлений

    Еще одна область развития учения о химических процессах -- химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм -- к химии сверхвысоких давлений. Высокие давления в химии используются с начала XX в. -- аммиачное производство осуществлялось при давлении 300 атм и температуре 600°С. Но в последнее время используются установки, в которых достигается давление 5000 атм, а испытания проводятся при давлении 600 000 атм, которое достигается за счет ударной волны при взрыве в течение миллионной доли секунды. При ядерных взрывах возникают еще более высокие давления.

    При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102--103 атм исчезает различие между жидкой и газовой фазами, а при 103--105 атм -- между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм.

    Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов. Он идет при давлении 50 000 атм и температуре 2000°С. При этом графит кристаллизуется в алмазы. Также алмазы можно синтезировать и с применением ударных волн. В последнее время ежегодно производятся тонны синтетических алмазов, которые лишь незначительно отличаются от природных по своим свойствам. Получающиеся алмазы используются для промышленных целей -- в режущем и буровом оборудовании. Удалось синтезировать черные алмазы -- карбонадо, которые тверже природных алмазов. Они используются для обработки самих алмазов.

    В настоящее время налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней -- корунда (красного рубина), изумруда и др. При высоких давлениях синтезируют и другие материалы, отличающиеся высокой термостойкостью. Так, из нитрида бора при давлении 100 000 атм и температуре 2000°С синтезирован боразон -- материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.

    Энергетика химических процессов и систем

    Химические реакции - взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химические реакции в отличие от ядерных не изменяют ни общего числа атомов в системе, ни изотопного состава элементов.

    Система - совокупность тел, выделенная из пространства. Если в системе возможен массо и теплообмен между всеми ее составными частями, то такая система называется термодинамической. Химическая система, в которой возможно протекание реакций, представляет собой частный случай термодинамической. Если между системой и окружающей средой отсутствует массо и теплообмен, то такая система называется изолированной. Если отсутствует массообмен, но возможен теплообмен, то система называется закрытой. Если же между системой и окружающей средой возможен и массо, и теплообмен, то система открытая. Система, состоящая из нескольких фаз, называется гетерогенной, однофазная система - гомогенной.

    Состояние химической системы определяется свойствами: температура, давление, концентрация, объем, энергия.

    Реакции, протекающие в гомогенной системе, развиваются во всем ее объеме и называются гомогенными. Реакции, происходящие на границе раздела фаз - гетерогенными.

    Для термодинамического описания системы пользуются так называемыми функциями состояния системы - это любая физическая величина, значения которой однозначно определяются термодинамическими свойствами системы. К важнейшим функциям состояния системы относятся:

    Полная энергия системы (Е);

    Внутренняя энергия системы (U);

    Энтальпия (или теплосодержание) - это мера энергии, накапливаемая веществом при его образовании (Н):

    Энтропия - мера неупорядоченности системы (S);

    Энергия Гиббса - мера устойчивости системы при постоянном давлении (G):

    Энергия Гельмгольца - мера устойчивости системы при постоянном объеме (F):

    Судить о возможности самопроизвольного протекания процесса можно по знаку изменения функции свободной энергии Гиббса: если?G < 0, т.е. в процессе взаимодействия происходит уменьшение свободной энергии, то процесс термодинамически возможен. Если?G > 0, то протекание процесса невозможно. Таким образом, все процессы могут самопроизвольно протекать в сторону уменьшения свободной энергии.

    Химическое взаимодействие, как правило, сопровождается тепловым эффектом. Процессы, протекающие с выделением теплоты, называются экзотермическими (?Н < 0), а идущие с поглощением теплоты - эндотермическими (?Н > 0).

    Тепловой эффект химических процессов в изобарных условиях определяется изменением энтальпии, т.е. разницей энтальпий конечного и исходного состояний. Согласно, закону Лавуазье-Лапласа: теплота, выделяющаяся при образовании вещества, равна теплоте, поглощаемой при разложении такого же его количества на исходные составные части.

    Более глубокие обобщения термохимических закономерностей дает закон Гесса: тепловой эффект химических реакций, протекающих или при постоянном давлении, или при постоянном объеме, не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состояниями системы.

    I закон термодинамики (закон сохранения энергии) - энергия не исчезает и не возникает вновь из ничего при протекании процесса, она лишь может переходить из одной формы в другую в строго эквивалентных отношениях.

    II закон термодинамики - при протекании процесса в изолированной системе обратимых процессов энтропия остается неизменной, а при необратимых процессах увеличивается. .

    Заключение

    Химия - наука социальная. Её высшая цель - удовлетворять нужды каждого человека и всего общества. Многие надежды человечества обращены к химии. Молекулярная биология, генная инженерия и биотехнология, наука о материалах являются фундаментально химическими науками. Прогресс медицины и охраны здоровья - это проблемы химии болезней, лекарств, пищи; нейрофизиология и работа мозга - это, прежде всего нейрохимия, химия, химия памяти. Человечество ждёт от химии новых материалов с магическими свойствами, новых источников и аккумуляторов энергии, новых чистых и безопасных технологий, и т.д.

    Как фундаментальная наука химия сформировалась в начале XX века, вместе с новой, квантовой механикой. И это бесспорная истина, потому что все объекты химии - атомы, молекулы, ионы, и т.д. - являются квантовыми объектами. Главные события в химии - химические реакции и химические процессы т.е. перегруппировка атомных ядер и преобразование электронных оболочек, электронных одежд молекул-реагентов в молекулы продуктов - также является квантовым событием.

    Необходимость химических процессов возникает под влиянием новых требований производства. Способы решения основной проблемы химии основанной на учении о составе и структурных теориях изученных ранее, был явно не достаточен тут и возникает новый уровень - уровень химических знаний - знаний о химических процессах. Химия становится наукой уже не только и не столько веществах, как законченных предметах, но наукой о процессах и механизмах изменения вещества. Благодаря этому она обеспечила производство синтетических материалов.

    В современном обществе учения о химических процессах необходимые знания, так как науке нужно развиваться и стремиться к новым открытиям, а этому может способствовать только человек.

    Список использованной литературы

    1. Бочкарёв А. И. - Концепции современного естествознания: учебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов; под ред. проф. А. И. Бочкарёва. - Тольятти: ТГУС, 2008. - 386 с. [электронный ресурс]www.tolgas.ru (дата обращения 14.11.2102)

    2. Садохин А.П. Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. -- 2-е изд., перераб. и доп. -- М.: ЮНИТИ-ДАНА, 2006. - 447 с.[электронный ресурс] http://www.twirpx.com/file/20132/ (дата обращения: 10.12.2102)

    Размещено на Allbest.ru

    ...

    Подобные документы

      Определение биосферы, ее эволюция, границы и состав, охрана. Свойства живого вещества. Биогенная миграция атомов. Биомасса, её распределение на планете. Роль растений, животных и микроорганизмов в круговороте веществ. Биосфера и превращение энергии.

      контрольная работа , добавлен 15.09.2013

      Порядок, беспорядок в природе, особенности теплового движения как пример хаотического, неорганизованного порядка. Феномен процесса рассеяния энергии. Химические процессы и свойства веществ. Качество тел в ракете в условиях высокой скорости движения.

      курсовая работа , добавлен 11.03.2010

      Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.

      реферат , добавлен 30.09.2010

      Вивчення будови ядра як одного із структурних елементів еукаріотічеськой клітки, що містить генетичну інформацію в молекулах ДНК. Ядерна оболонка, ядерце, матрикс як структурні елементи ядра. Характеристика процесів реплікації і транскрипції молекул.

      презентация , добавлен 08.01.2012

      Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.

      презентация , добавлен 06.11.2014

      Превращение азотистых веществ в растениях. Качество растительных масел в зависимости от факторов внешней среды. Превращение веществ при созревании семян масленичных культур. Яровизация, ее суть и значение. Влияние температуры и света на покой семян.

      контрольная работа , добавлен 05.09.2011

      Анализ возможных путей расщепления глюкозы. Определение составляющих и принципа функционирования аэробного метаболизма. Процессы образования органических кислот и биотрансформации исходных субстратов, отличных от углеводов по своей химической природе.

      реферат , добавлен 09.06.2015

      Потоки вещества, энергии и деструкционные блоки в экосистемах. Проблемы биологической продуктивности. Пирамиды чисел, биомасс и энергии. Процессы трансформации вещества и энергии между биотой и физической средой. Биохимический круговорот веществ.

      реферат , добавлен 26.06.2010

      Закон тяготения Ньютона. Специальная теория относительности. Второе начало термодинамики. Представления о строении атомов. Методы химической кинетики. Понятия равновесия, равновесного излучения. Реакции синтеза ядер. Особенности биотического круговорота.

      контрольная работа , добавлен 16.04.2011

      Описание основных функций, выполняемых процессами выделения веществ у растений. Понятие аллелопатии, экскреции и секреции. Функции специализированных секреторных структур у растений. Группы эпидермальных образований, участвующих в выделении веществ.