Основные типы и механизмы реакций в органической химии. Радикальные и ионные механизмы реакций Механизмы реакций в органической химии с примерами




Реакции органических веществ можно формально разделить на четыре основных типа: замещения, при­соединения, отщепления (эли­минирования) и перегруппировки (изомеризации).

Оче­видно, что все многообразие реакций органических соеди­нений невозможно свести к предложенной классифика­ции (например, реакции горе­ния). Однако такая классификация поможет устано­вить аналогии с уже знакомыми вам реакциями, протекающими между неорганическими веществами.

Как правило, основное органическое соедине­ние, участвующее в реакции, называют субстратом , а другой компонент реакции условно рассматрива­ют как реагент .

Реакции замещения

Реакции замещения - это реакции, в резуль­тате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстра­те) на другие атомы или группы атомов.

В реакции замещения вступают предельные и ароматические соединения, такие как алканы, циклоалканы или арены. Приведем примеры та­ких реакций.

Под действием света атомы водорода в молеку­ле метана способны замещаться на атомы галоге­на, например, на атомы хлора:

Другим примером замещения водорода на гало­ген является превращение бензола в бромбензол:

Уравнение этой реакции может быть записано иначе:

При этой форме записи реагенты , катализа­тор , условия проведения реакции записывают над стрелкой, а неорганические продукты реакции - под ней.

Реакции присоединения

Реакции присоединения - это реакции, в результате ко­торых две или более молекул реагирующих веществ соеди­няются в одну.

В реакции присоединения вступают ненасыщенные со­единения, такие как алкены или алкины. В зависимости от того, какая молекула выступает в качестве ре­агента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

1. Гидрирование - реакция присоединения мо­лекулы водорода по кратной связи:

2. Гидрогалогенирование - реакция присоеди­нения галогенводорода (гидрохлорирование):

3. Галогенирование - реакция присоединения галогена:

4. Полимеризация - особый тип реакций присо­единения, в ходе которых молекулы вещества с не­большой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой - макромолекул.

Реакции полимеризации - это процессы сое­динения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макро­молекулы) полимера.

Примером реакции полимеризации может слу­жить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и ра­дикального инициатора полимеразации R .

Наиболее характерная для органических соеди­нений ковалентная связь образуется при перекры­вании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой нахо­дится общая электронная пара. При разрыве связи судьба этих общих электронов может быть разной.

Типы реакционноспособных частиц в органической химии

Орбиталь с неспаренным электроном, принад­лежащая одному атому, может перекрываться с орбиталью другого атома, на которой также на­ходится неспаренный электрон. При этом происхо­дит образование ковалентной связи по обменному механизму :

Обменный механизм образования ковалентной связи реализуется в том случае, если общая элек­тронная пара образуется из неспаренных электро­нов, принадлежащих разным атомам.

Процессом, противоположным образованию ко­валентной связи по обменному механизму, явля­ется разрыв связи , при котором к каждому атому отходит по одному электрону. В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:

Такие частицы называются свободными ради­калами .

Свободные радикалы - атомы или группы ато­мов, имеющие неспаренные электроны.

Свободнорадикальные реакции - это реакции, которые протекают под действием и при участии свободных радикалов.

В курсе неорганической химии это реакции взаимодействия водорода с кислородом, галогена­ми, реакции горения. Реакции этого типа отлича­ются высокой скоростью, выделением большого количества тепла.

Ковалентная связь может образоваться и по донорно-акцепторному механизму . Одна из орби­талей атома (или аниона), на которой находится неподеленная электронная пара, перекрывается с незаполненной орбиталью другого атома (или ка­тиона), имеющего незаполненную орбиталь, при этом формируется ковалентная связь , например:

Разрыв ковалентной связи приводит к образо­ванию положительно и отрицательно заряженных частиц; так как в данном случае оба электрона из общей электронной пары остаются при одном из атомов, у другого атома получается незаполненная орбиталь:

Рассмотрим электролитическую диссоциацию кислот :

Можно легко догадаться, что частица, имею­щая неподеленную электронную пару R: — , т. е. от­рицательно заряженный ион, будет притягиваться к положительно заряженным атомам или к ато­мам, на которых существует по крайней мере ча­стичный или эффективный положительный заряд. Частицы с неподеленными электронными парами называют нуклеофильными агентами (nucleus - «ядро», положительно заряженная часть атома), т. е. «друзьями» ядра, положительного заряда.

Нуклеофилы (Nu) - анионы или молекулы, имеющие неподеленную пару электронов, взаимо­действующие с участками молекул, на которых со­средоточен эффективный положительный заряд.

Примеры нуклеофилов: Cl — (хлорид-ион), ОН — (ги­дроксид-анион), СН 3 О — (метоксид-анион), СН 3 СОО — (ацетат-анион).

Частицы, имеющие незаполненную орбиталь , напротив, будут стремиться заполнить ее и, следо­вательно, будут притягиваться к участкам молекул, на которых присутствует повышенная электронная плотность, отрицательный заряд, неподеленная электронная пара. Они являются электрофилами , «друзьями» электрона, отрицательного заряда или частиц с повышенной электронной плотностью.

Электрофилы - катионы или молекулы, име­ющие незаполненную электронную орбиталь, стре­мящиеся к заполнению ее электронами, так как это приводит к более выгодной электронной конфигу­рации атома.

Электрофилом с незаполненной орбиталью яв­ляется не любая частица. Так, например, катионы щелочных металлов имеют конфигурацию инерт­ных газов и не стремятся к приобретению электро­нов, так как имеют низкое сродство к электрону. Из этого можно сделать вывод, что несмотря на наличие у них незаполненной орбитали, подобные частицы не будут являться электрофилами.

Основные механизмы протекания реакций

Выделено три основных типа реагирующих ча­стиц - свободные радикалы, электрофилы, нукле­офилы - и три соответствующих им типа меха­низма реакций:

Свободнорадикальные;

Электрофильные;

Нулеофильные.

Кроме классификации реакций по типу реаги­рующих частиц, в органической химии различают четыре вида реакций по принципу изменения соста­ва молекул: присоединения , замещения , отщепле­ния , или элиминирования (от англ. to eliminate - удалять, отщеплять) и перегруппировки . Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспособ­ных частиц, можно выделить несколько основных механизмов протекания реакций.

1. Свободнорадикальное замещение:

2. Свободнорадикальное присоединение:

3. Электрофильное замещение:

4. Электрофильное присоединение:

5. Нуклеофильное присоединение:

Кроме того, рассмотрим реакции отщепления, или элиминирования, которые идут под воздей­ствием нуклеофильных частиц - оснований.

6. Элиминирование:

Правило В. В. Марковникова

Отличительной чертой алкенов (непредельных углеводородов) является способность вступать в реакции присоединения. Большинство этих ре­акций протекает по механизму электрофильного присоединения.

Гидрогалогенирование (присоединение галоген­водорода):

Эта реакция подчиняется правилу В. В. Марков­никова.

При присоединении галогенводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором нахо­дится больше атомов водорода, а галоген - к ме­нее гидрированному.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Классификация реакций По числу исходных и конечных веществ: 1. Присоединение 2. Отщепление (элиминирование) 3. Замещение

Классификация реакций По механизму разрыва связей: 1. Гомолитические (радикальные) радикалы 2. Гетеролитические (ионные) ионы

Механизм реакции Механизм – детальное описание химической реакции по стадиям с указанием промежуточных продуктов и частиц. Схема реакции: Механизм реакции:

Классификация реакций по типу реагентов 1. Радикальные Радикал –химически активная частица с неспаренным электроном. 2. Электрофильные Электрофил – электронодефицитная частица или молекула с электронодефицитным атомом. 3. Нуклеофильные Нуклеофил – анион или нейтральная молекула, имеющая атом с неподеленной электронной парой.

Виды химических связей в органических веществах Основной тип связи – ковалентная (реже встречается ионная) Сигма-связь (σ-): Пи-связь (-)

АЛКАНЫ- алифатические (жирные) углеводороды «Алифатос» -масло, жир (греч). Cn. H 2 n+2 Предельные, насыщенные углеводороды

Гомологический ряд: CH 4 - метан C 2 H 6 - этан C 3 H 8 - пропан C 4 H 10 - бутан C 5 H 12 - пентан т. д. С 6 Н 14 - гексан С 7 Н 16 - гептан С 8 Н 18 - октан С 9 Н 20 - нонан С 10 Н 22 – декан и С 390 Н 782 –ноноконтатриктан (1985 г)

Атомно-орбитальная модель молекулы метана В молекуле метана у атома углерода уже нет S- и Р-орбиталей! Его 4 гибридные, равноценные по энергии и по форме SP 3 -орбитали, образуют 4 -связи с Sорбиталями атома водорода. Н Н 4 -связи

Реакция нитрования Коновалов Дмитрий Петрович (1856 -1928) 1880 год. Первая удачная попытка оживить «химических мертвецов» , которыми считались алканы. Нашел условия нитрования алканов. Рис. Источник: http: //images. yandex. ru.

Химические свойства I. Реакции с разрывом С-Н-связей (реакции замещения): 1. галогенирование 2. нитрование 3. сульфохлорирование II. Реакции с разрывом С-С-связей: 1. горение 2. крекинг 3. изомеризация

Как найти химика? Если хочешь найти химика, спроси, что такое моль и неионизованный. И если тот начнет говорить о пушных зверях и организации труда, спокойно уходи. Писатель-фантаст, популяризатор науки Айзек Азимов (1920– 1992) Рис. Источник: http: //images. yandex. ru.

1. Реакция галогенирования Хлорирование: RH + Cl 2 hv RCl + HCl Бромирование: RH + Br 2 hv RBr + HBr Например, хлорирование метана: CH 4 + Cl 2 CH 3 Cl + HCl

Стадии свободно-радикального механизма Схема реакции: CH 4 + Cl 2 CH 3 Cl + HCl Механизм реакции: I. Инициирование цепи – стадия зарождения свободных радикалов. Cl Cl 2 Cl Радикал - активная частица, инициатор реакции. – – Стадия требует энергии в виде нагревания или освещения. Последующие стадии могут протекать в темноте, без нагревания.

Стадии свободно-радикального механизма II. Рост цепи – основная стадия. CH 4 + Cl HCl + CH 3 + Cl 2 CH 3 Cl + Cl Стадия может включать несколько подстадий, на каждой из которых образуется новый радикал, но не Н !!! На II, основной стадии, обязательно образуется основной продукт!

Стадии свободно-радикального механизма III. Обрыв цепи – рекомбинация радикалов. Cl + Cl Cl 2 Cl + CH 3 CH 3 Cl CH 3 + CH 3 CH 3 -CH 3 Два любых радикала соединяются.

Селективность замещения Селективность – избирательность. Региоселективность – избирательность в определенной области реакций. Например, селективность галогенирования: 45% 3% Вывод? 55% 97%

Селективность галогенирования зависит от следующих факторов: Условия реакции. При низких температурах идет более селективно. Природа галогена. Чем активнее галоген, тем менее избирательна реакция. F 2 реагирует очень энергично, с разрушением С-С-связей. I 2 не реагирует с алканами в указанных условиях. Строение алкана.

Влияние строения алкана на селективность замещения. Если атомы углерода в алкане неравноценны, то замещение при каждом из них идет с разной скоростью. Относительн. скорость реакции замещения Первич. атом Н Вторич. атом Н Трет. атом Н хлорирование 1 3, 9 5, 1 бромирование 1 82 1600 Вывод?

Для отрыва третичного атома водорода требуется меньше энергии, чем для отрыва вторичного и первичного! Формула алкана Результат гомолиза ЕД, к. Дж/моль СН 4 СН 3 + Н 435 СН 3 - СН 3 С 2 Н 5 + Н 410 СН 3 СН 2 СН 3 (СН 3)2 СН + Н 395 (СН 3)3 СН (СН 3)3 С + Н 377

Направление протекания реакций Любая реакция протекает преимущественно в направлении образования более устойчивой промежуточной частицы!

Промежуточная частица в радикальных реакциях - свободный радикал. Наиболее легко образуется наиболее устойчивый радикал! Ряд устойчивости радикалов: R 3 C > R 2 CH > RCH 2 > CH 3 Алкильные группы проявляют электронодонорный эффект, за счет чего стабилизируют радикал

Реакция сульфохлорирования Схема реакции: RH + Cl 2 + SO 2 RSO 2 Cl + HCl Механизм реакции: 1. Cl Cl 2 Cl 2. RH + Cl R + HCl R + SO 2 RSO 2 + Cl 2 RSO 2 Cl + Cl и т. д. 3. 2 Cl Cl 2 и т. д.

Реакция Коновалова Д. П. Нитрование по Коновалову проводят действием разбавленной азотной кислоты при температуре 140 о. С. Схема реакции: RH + HNO 3 RNO 2 + H 2 O

Механизм реакции Коновалова HNO 3 N 2 O 4 1. N 2 O 4 2 NO 2 2. RH + NO 2 R + HNO 2 R + HNO 3 RNO 2 + OH RH + OH R + H 2 O и т. д. 3. Обрыв цепи.

Алкены – ненасыщенные углеводороды с одной С=С связью Cn. H 2 n С=С – функциональная группа алкенов

Химические свойства алкенов Общая характеристика Алкены – реакционноспособный класс соединений. Они вступают в многочисленные реакции, большинство из которых идут за счет разрыва менее прочной пи-связи. Е С-С (σ-) ~ 350 Кдж/моль Е С=С (-) ~ 260 Кдж/моль

Характерные реакции Присоединение – наиболее характерный тип реакций. Двойная связь – донор электронов, поэтому она склонна присоединять: Е – электрофилы, катионы или радикалы

Примеры реакций электрофильного присоединения 1. Присоединение галогенов – Присоединяются не все галогены, а только хлор и бром! – Поляризация нейтральной молекулы галогена может происходить под действием полярного растворителя или под действием двойной связи алкена. Красно-коричневый раствор брома становится бесцветным

Электрофильное присоединение Реакции протекают при комнатной температуре, не требуют освещения. Механизм ионный. Схема реакции: XY = Cl 2, Br 2, HCl, HBr, HI, H 2 O

Сигма – комплекс является карбокатионом – частицей с положительным зарядом на атоме углерода. Если в реакционной среде присутствуют другие анионы, то они тоже могут присоединяться к карбокатиону.

Например, присоединение брома, растворенного в воде. Эта качественная реакция на двойную С=С-связь протекает с обесцвечиванием раствора брома и образованием двух продуктов:

Присоединение к несимметричным алкенам Региоселективность присоединения! Правило Марковникова (1869): кислоты и вода присоединяются к несимметричным алкенам таким образом, что водород присоединяется к более гидрированному атому углерода.

Марковников Владимир Васильевич (1837 - 1904) Выпускник Казанского университета. С 1869 года – профессор кафедры химии. Основатель научной школы. Рис. Источник: http: //images. yandex. ru.

Объяснение правила Марковникова Реакция протекает через образование наиболее устойчивой промежуточной частицы – карбокатиона. первичный вторичный, более устойчивый

Ряд устойчивости карбокатионов: третичный вторичный первичный метильный Правило Марковникова в современной формулировке: присоединение протона к алкену происходит с образованием более стабильного карбокатиона.

Антимарковниковское присоединение CF 3 -CH=CH 2 + HBr CF 3 -CH 2 Br Формально реакция идет против правила Марковникова. CF 3 – электроноакцепторный заместитель Другие электроноакцепторы: NO 2, SO 3 H, COOH, галогены и т. п.

Антимарковниковское присоединение более устойчивый неустойчивый CF 3 – электроноакцептор, дестабилизирует карбокатион Реакция только формально идет против правила Марковникова. Фактически ему подчиняется, так как идет через более устойчивый карбокатион.

Перекисный эффект Хараша X CH 3 -CH=CH 2 + HBr CH 3 -CH 2 Br X = O 2, H 2 O 2, ROOR Механизм свободнорадикальный: 1. H 2 O 2 2 OH + HBr H 2 O + Br 2. CH 3 -CH=CH 2 + Br CH 3 -CH -CH 2 Br более устойчивый радикал CH 3 -CH -CH 2 Br + HBr CH 3 -CH 2 Br + Br и т. д. 3. Два любых радикала соединяются между собой.

Электрофильное присоединение 3. Гидратация – присоединение воды – Реакция протекает в присутствии кислотных катализаторов, чаще всего это – серная кислота. – Реакция подчиняется правилу Марковникова. Дешевый способ получения спиртов

На экзамене академик Иван Алексеевич Каблуков просит студента рассказать, как в лаборатории получают водород. «Из ртути» , - отвечает тот. «Как это "из ртути"? ! Обычно говорят "из цинка", а вот из ртути - это что-то оригинальное. Напишите-ка реакцию» . Студент пишет: Hg = Н + g И говорит: «Ртуть нагревают; она разлагается на Н и g. Н - водород, он легкий и поэтому улетает, а g - ускорение силы тяжести, тяжелое, остается» . «За такой ответ надо ставить "пятерку", - говорит Каблуков. - Давайте зачетку. Только "пятерку" я сначала тоже подогрею. "Три" улетает, а "два" остается» .

Двое химиков в лаборатории: - Вась, опусти руку в этот стакан. - Опустил. - Что-нибудь чувствуешь? - Нет. - Значит серная кислота в другом стакане.

Ароматические углеводороды Ароматический – душистый? ? Ароматические соединения – это бензол и вещества, напоминающие его по химическому поведению!

CH 3 -CH 3 + Cl 2 – (hv) ---- CH 3 -CH 2 Cl + HCl

C 6 H 5 CH 3 + Cl 2 --- 500 C --- C 6 H 5 CH 2 Cl + HCl

    Реакции присоединеия

Такие реакции характерны для органических соединений, содержащих кратные(двойные или тройные) связи. К реакциям этого типа относятся реакции присоединения галогенов, галогеноводородов и воды к алкенам и алкинам

CH 3 -CH=CH 2 + HCl ---- CH 3 -CH(Cl)-CH 3

    Реакции отщепления (элиминирования)

Это реакции, приводящие к образованию кратных связей. При отщеплении галогеноводородов и воды наблюдается определенная селективность реакции, описываемая правилом Зайцева, согласно которому атом водорода отщепляется от того атома углерода, при котором находится меньше атомов водорода. Пример реакции

CH3-CH(Cl)-CH 2 -CH 3 + KOH →CH 3 -CH=CH-CH 3 + HCl

    Полимеризации и поликонденсации

n(CH 2 =CHCl)  (-CH 2 -CHCl)n

    Окислительно-восстановительные

Наиболее интенсивная из окислительных реакций – это горение, реакция, характерная для всех классов органических соединений. При этом в зависимости от условий горения углерод окисляется до С (сажа), СО или СО 2 , а водород превращается в воду. Однако для химиков-органиков большой интерес представляют реакции окисления, проводимые в гораздо более мягких условиях, чем горение. Используемые окислители: растворы Br2 в воде или Cl2 в CCl 4 ; KMnO 4 в воде или разбавленной кислоте; оксид меди; свежеосажденные гидроксиды серебра (I) или меди(II).

3C 2 H 2 + 8KMnO 4 +4H 2 O→3HOOC-COOH + 8MnO 2 + 8KOH

    Этерификации (и обратной ей реакции гидролиза)

R 1 COOH + HOR 2 H+  R 1 COOR 2 + H 2 O

    Циклоприсоединение

Y R Y-R

+ ‖ → ǀ ǀ

R Y R-Y

+ →

11. Классификация органических реакций по механизму. Примеры.

Механизм реакции предполагает детальное постадийное описание химических реакций. При этом устанавливают, какие именно ковалентные связи разрываются, в каком порядке и каким путем. Столь же тщательно описывают образование новых связей в процессе реакции. Рассматривая механизм реакции, прежде всего обращают внимание на способ разрыва ковалентной связи в реагирующей молекуле. Таких способов два – гомолитический и гетеролитический.

Радикальные реакции протекают путем гомолитического (радикального) разрыва ковалентной связи:

Радикальному разрыву подвергаются неполярные или малополярные ковалентные связи (С–С, N–N, С–Н) при высокой температуре или под действием света. Углерод в радикале СН 3 имеет 7 внешних электронов (вместо устойчивой октетной оболочки в СН 4). Радикалы неустойчивы, они стремятся захватить недостающий электрон (до пары или до октета). Один из способов образования устойчивых продуктов – димеризация (соединение двух радикалов):

СН 3 + СН 3 СН 3 : СН 3 ,

Н + Н Н : Н.

Радикальные реакции – это, например, реакции хлорирования, бромирования и нитрования алканов:

Ионные реакции протекают с гетеролитическим разрывом связи. При этом промежуточно образуются короткоживущие органические ионы – карбкатионы и карбанионы – с зарядом на атоме углерода. В ионных реакциях связывающая электронная пара не разъединяется, а целиком переходит к одному из атомов, превращая его в анион:

К гетеролитическому разрыву склонны сильно полярные (Н–O, С–О) и легко поляризуемые (С–Вr, С–I) связи.

Различают нуклеофильные реакции (нуклеофил – ищущий ядро, место с недостатком электронов) и электрофильные реакции (электрофил – ищущий электроны). Утверждение, что та или иная реакция является нуклеофильной или электрофильной, условно всегда относится к реагенту. Реагент – участвующее в реакции вещество с более простой структурой. Субстрат – исходное вещество с более сложной структурой. Уходящая группа – это замещаемый ион, который был связан с углеродом. Продукт реакции – новое углеродсодержащее вещество (записывается в правой части уравнения реакции).

К нуклеофильным реагентам (нуклеофилам) относят отрицательно заряженные ионы, соединения с неподеленными парами электронов, соединения с двойными углерод-углеродными связями. К электрофильным реагентам (электрофилам) относят положительно заряженные ионы, соединения с незаполненными электронными оболочками (АlCl 3 , ВF 3 , FeCl 3), cоединения с карбонильными группами, галогены. Электрофилы – любые атом, молекула или ион, способные присоединить пару электронов в процессе образования новой связи. Движущая сила ионных реакций – взаимодействие противоположно заряженных ионов или фрагментов разных молекул с частичным зарядом (+ и –).

Примеры ионных реакций разных типов.

Нуклеофильное замещение :

Электрофильное замещение :

Нуклеофильное присоединение (сначала присоединяется CN – , потом Н +):

Электрофильное присоединение (сначала присоединяется Н + , потом Х –):

Элиминирование при действии нуклеофилов (оснований) :

Элиминирование при действии электрофилов (кислот) :

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования , дегидратации , дегидрогалогенирования и т.п.:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

С 18 H 38 → С 9 H 18 + С 9 H 20

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH 2 , H 2 O, NH 3 , C 2 H 5 OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R 3 C + , AlCl 3 , ZnCl 2 , SO 3 , BF 3 , R-Cl, R 2 C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения


Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Категории ,

Механизмы органических реакций

Наименование параметра Значение
Тема статьи: Механизмы органических реакций
Рубрика (тематическая категория) Образование

Классификация реакций

Существуют четыре основные типа реакций, в которых участвуют органические соединœения: замещение (вытеснение), присоединœение, элиминирование (отщепления), перегруппировки.

3.1 Реакции замещения

В реакциях первого типа замещение обычно происходит у атома углерода, но замещенный атом должна быть атомом водорода или каким-либо другим атомом или группой атомов. При электрофильном замещении чаще всœего замещается атом водорода; примером служит классическое ароматическое замещение:

При нуклеофильном замещении чаще замещается не атом водорода, а другие атомы, к примеру:

NC - + R−Br → NC−R +BR -

3.2 Реакции присоединœения

Реакции присоединœения также бывают электрофильными, нуклеофильными или радикальными исходя из типа частиц, инициирующих процесс. Присоединœение к обычным двойным углерод-углеродным связям индуцируется, как правило, электрофилом или радикалом. К примеру, присоединœение HBr

может начинаться с атаки двойной связи протоном Н + или радикалом Br·.

3.3 Реакции элиминирования

Реакции элиминирования по существу обратны реакциям присоединœения; наиболее обычный тип такой реакции – отщепление атома водорода и другого атома или группы от сосœедних атомов углерода с образованием алкенов:

3.4 Реакции перегруппировки

Перегруппировки также могут протекать через промежуточные соединœения, представляющие собой катионы, анионы или радикалы; чаще всœего эти реакции идут с образованием карбокатионов или других электронодефицитных частиц. Перегруппировки могут включать существенную перестройку углеродного скелœета. За стадией собственно перегруппировки в таких реакциях часто следуют стадии замещения, присоединœения или отщепления, приводящие к образованию стабильного конечного продукта.

Детальное описание химической реакции по стадиям принято называть механизмом. С электронной точки зрения под механизмом химической реакции понимают способ разрыва ковалентных связей в молекулах и последовательность состояний, через которые проходят реагирующие вещества до превращения в продукты реакций.

4.1 Свободно-радикальные реакции

Свободно-радикальные реакции - ϶ᴛᴏ химические процессы, в которых принимают участие молекулы, имеющие неспаренные электроны. Определœенные аспекты реакций свободных радикалов являются уникальными в сравнении с другими типами реакций. Основное различие состоит в том, что многие свободно-радикальные реакции являются цепными. Это означает существование механизма, благодаря которому множество молекул превращается в продукт с помощью повторяющегося процесса, инициируемого созданием одной реакционноспособной частицы. Типичный пример иллюстрируется с помощью следующего гипотетического механизма:

Стадию, на которой генерируется реакционный интермедиат, в данном случае А·, принято называть инициированием. Эта стадия протекает при высокой температуре, под действием УФ или пероксидов, в неполярных растворителях. В следующих четырех уравнениях данного примера повторяется последовательность двух реакций; они представляют фазу развития цепи. Цепные реакции характеризуются длиной цепи, которая соответствует числу стадий развития, приходящихся на одну стадию инициирования. Вторая стадия протекает одновременным синтезом соединœения и образования нового радикала, который продолжает цепь превращений. Последней стадией является стадией обрыва цепи, которая включает любую реакцию, в которой разрушается один из реакционных интермедиатов, необходимых для развития цепи. Чем больше стадий обрыва цепи, тем меньшей становится длина цепи.

Свободно-радикальные реакции протекают: 1)на свету, при высокой температуре или в присутствии радикалов, которые образуются при разложении других веществ; 2)тормозятся веществами, легко реагирующими со свободными радикалами; 3)протекают в неполярных растворителях или в паровой фазе; 4)часто имеют автокаталитический и индукционный период перед началом реакции; 5)в кинœетическом отношении являются цепными.

Реакции радикального замещения характерны для алканов, а радикального присоединœения – для алкенов и алкинов.

СН 4 + Сl 2 → CH 3 Cl + HCl

CH 3 -CH=CH 2 + HBr → CH 3 -CH 2 -CH 2 Br

CH 3 -C≡CH + HCl → CH 3 -CH=CHCl

Соединœение свободных радикалов между собой и обрыв цепи происходит в основном на стенках реактора.

4.2 Ионные реакции

Реакции, в которых происходит гетеролитический разрыв связей и образуются промежуточные частицы ионного типа, называются ионными реакциями.

Ионные реакции протекают: 1)в присутствии катализаторов (кислот или оснований и не подвержены влиянию света или свободных радикалов, в частности, возникающих при разложении пероксидов); 2)не подвергаются влиянию акцепторов свободных радикалов; 3)на ход реакции оказывает влияние природа растворителя; 4)редко протекают в паровой фазе; 5)кинœетически являются, в основном, реакциями первого или второго порядка.

По характеру реагента͵ действующего на молекулу, ионные реакции делятся на электрофильные и нуклеофильные . Реакции нуклеофильного замещения характерны для алкил- и арилгалогенидов,

CH 3 Cl + H 2 O → CH 3 OH + HCl

C 6 H 5 -Cl + H 2 O → C 6 H 5 -OH + HCl

C 2 H 5 OH + HCl → C 2 H 5 Cl + H 2 O

C 2 H 5 NH 2 + CH 3 Cl → CH 3 -NH-C 2 H 5 + HCl

электрофильного замещения – для алканов в присутствии катализаторов

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 2 -CH 3

и аренов.

C 6 H 6 + HNO 3 + H 2 SO 4 → C 6 H 5 -NO 2 + H 2 O

Реакции электрофильного присоединœения характерны для алкенов

CH 3 -CH=CH 2 + Br 2 → CH 3 -CHBr-CH 2 Br

и алкинов,

CH≡CH + Cl 2 → CHCl=CHCl

нуклеофильного присоединœения – для алкинов.

CH 3 -C≡CH + C 2 H 5 OH + NaOH → CH 3 -C(OC 2 H 5)=CH 2

Механизмы органических реакций - понятие и виды. Классификация и особенности категории "Механизмы органических реакций" 2017, 2018.